Properties

Label 960.414.3.a1.a1
Order $ 2^{6} \cdot 5 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times \SD_{64}$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Index: \(3\)
Exponent: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Generators: $a, b^{24}, c^{3}, b^{14}, b, b^{16}, b^{4}$ Copy content Toggle raw display
Nilpotency class: $5$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{15}:\SD_{64}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:((C_2\times C_4\times C_8).C_2^5)$
$\operatorname{Aut}(H)$ $C_4\times D_{16}:C_8$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{res}(S)$$C_4\times D_{16}:C_8$, of order \(1024\)\(\medspace = 2^{10} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{16}$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times \SD_{64}$
Normal closure:$C_{15}:\SD_{64}$
Core:$C_5\times D_{16}$
Minimal over-subgroups:$C_{15}:\SD_{64}$
Maximal under-subgroups:$C_5\times D_{16}$$C_5\times Q_{32}$$C_{160}$$\SD_{64}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3:D_{16}$