Properties

Label 960.414.12.a1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{80}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Generators: $b^{14}, b^{28}, b^{24}, c^{3}, b^{16}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}:\SD_{64}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:((C_2\times C_4\times C_8).C_2^5)$
$\operatorname{Aut}(H)$ $C_2\times C_4^2$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_4^2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3:C_{160}$
Normalizer:$C_{15}:\SD_{64}$
Minimal over-subgroups:$C_{240}$$C_5\times D_{16}$$C_5\times Q_{32}$$C_{160}$
Maximal under-subgroups:$C_{40}$$C_{16}$

Other information

Möbius function$-6$
Projective image$C_3:D_{16}$