Properties

Label 93312.fb.9.A
Order $ 2^{7} \cdot 3^{4} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: not computed
Generators: $a^{3}, e^{3}, d^{2}e^{4}f^{2}g^{3}, f^{2}g^{2}, f^{3}, b^{3}, cde^{2}f^{4}g^{4}, d^{3}, g^{2}, g^{3}, a^{2}d^{3}e^{3}fg^{5}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is maximal, nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_2^4.C_3^4.C_4.C_2$
Normal closure:$C_3^4:(C_2\times A_4^2:C_4)$
Core:$A_4^2.C_3:S_3$
Minimal over-subgroups:$C_3^4:(C_2\times A_4^2:C_4)$
Maximal under-subgroups:$(C_3\times A_4^2).D_6$$C_3\times (C_3\times A_4^2).C_4$$(C_3\times A_4^2).C_4.C_2$$C_2^2\wr C_2.S_3^2$$C_3^3:(C_4\times S_3)$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:(C_2\times A_4^2:C_4)$