Properties

Label 93312.fb.36.B
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: not computed
Generators: $b^{3}, g^{3}, g^{2}, d^{3}e^{3}, cd^{4}e^{5}f^{4}g^{4}, f^{2}g^{2}, f^{3}, e^{3}, d^{2}e^{4}f^{2}g^{3}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^2:C_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^4:(C_2\times A_4^2:C_4)$
Complements:$C_3^2:C_4$ $C_3^2:C_4$
Minimal over-subgroups:$C_2^4.C_3^4.C_6$$C_2^4.C_3^4.C_6$$(C_3\times A_4^2).D_6$
Maximal under-subgroups:$C_3^2\times A_4^2$$A_4^2:S_3$$C_6^2:S_4$$C_6^2:S_4$$A_4^2:S_3$$A_4^2:S_3$$C_3^3:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:(C_2\times A_4^2:C_4)$