Properties

Label 93312.fb.108.FT
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2:S_3$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, d^{3}e^{3}, e^{3}, cd^{4}e^{5}f^{4}, f^{2}g^{2}, g^{3}, f^{3}, d^{2}e^{4}f^{2}g^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $(C_3\times A_4^2).C_3:S_3.C_2^3$
$\card{W}$\(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$(C_3\times A_4^2).C_6$
Normal closure:$A_4^2.C_3:S_3$
Core:$C_2^4$
Minimal over-subgroups:$A_4^2.C_3:S_3$$(C_3\times A_4^2).C_6$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:(C_2\times A_4^2:C_4)$