Properties

Label 93312.fb.48.P
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:S_4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{2}d^{3}e^{3}fg^{2}, d^{2}e^{4}f^{5}g^{3}, f^{2}g^{2}, g^{2}, cde^{5}f^{4}g^{4}, e^{3}, d^{3}e^{3}, b^{2}defg^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3^3.(C_3\times A_4).D_6^2$
$W$$A_4:S_3^2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_6^2.C_3^3.C_2^2$
Normal closure:$(C_2\times C_6^3).C_3^3.C_2$
Core:$C_3^2$
Minimal over-subgroups:$C_3\times C_2^4.\He_3:S_3$$C_6^2.C_3^4.C_2$$C_6^2.C_3^3.C_2^2$
Maximal under-subgroups:$C_3^4:A_4$$C_3^4:D_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^4:S_3$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:(C_2\times A_4^2:C_4)$