Properties

Label 93312.fb.12.K
Order $ 2^{5} \cdot 3^{5} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: not computed
Generators: $a^{2}d^{3}e^{3}fg^{5}, f^{3}g^{3}, d^{2}e^{4}f^{2}g^{3}, f^{2}g^{2}, g^{3}, g^{2}, cd^{4}e^{5}f^{4}g^{4}, e^{3}, d^{3}e^{3}, b^{2}defg^{3}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ not computed
$W$$A_4^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_2^4.C_3^4.D_6$
Normal closure:$(C_2\times C_6^3).C_3^3.C_2$
Core:$C_3^2\times A_4^2$
Minimal over-subgroups:$(C_2\times C_6^3).C_3^3.C_2$$C_2^4.C_3^4.D_6$
Maximal under-subgroups:$C_3\times C_6^2:C_3\times A_4$$C_3\times C_6^2:C_3.D_4$$C_3^2\times C_3:\GL(2,\mathbb{Z}/4)$$C_3\times C_2^4:\He_3.C_2$$C_3^2\times \PSOPlusPlus(4,3)$$C_3\times C_2^4.C_3^2:S_3$$C_3^2\times \PSOPlusPlus(4,3)$$C_3\times C_2^4.C_3^2:S_3$$C_2^4.\He_3:S_3$$C_3\times \He_3:S_4$$C_3^4:S_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4:(C_2\times A_4^2:C_4)$