Properties

Label 93312.fb.144.CO
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{2}d^{3}e^{3}f^{4}g^{5}, d^{3}e^{3}, f^{2}g^{2}, g^{2}, e^{3}, b^{2}defg^{3}, cd^{5}ef^{3}g$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_6^2:S_3^2$
Normal closure:$(C_2\times C_6^3).C_3^3.C_2$
Core:$C_3^2$
Minimal over-subgroups:$C_3\times C_2^4:\He_3.C_2$$C_3^4:S_4$$C_3^4:S_4$$C_3^4:S_4$$C_6^2:S_3^2$

Other information

Number of subgroups in this autjugacy class$144$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^4:(C_2\times A_4^2:C_4)$