Properties

Label 90720.g.28.a1.a1
Order $ 2^{3} \cdot 3^{4} \cdot 5 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_9:\GL(2,4)$
Order: \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(1,4)(2,8,9,7,3,5), (2,3,9)(5,7,8), (10,12)(11,13), (1,4,6)(2,9,3)(5,7,8)(11,12,14), (1,3,5,4,2,7,6,9,8), (1,4,6)(2,9,3)(5,7,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_9:C_6\times S_5$, of order \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \)
$W$$D_9:\GL(2,4)$, of order \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_9:\GL(2,4)$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$A_5$
Minimal over-subgroups:$A_5\times {}^2G(2,3)$
Maximal under-subgroups:$C_9:\GL(2,4)$$S_3\times \GL(2,4)$$D_9\times A_5$$A_4\times C_9:C_6$$D_{45}:C_6$$C_3^2.S_3^2$

Other information

Number of subgroups in this conjugacy class$28$
Möbius function$-1$
Projective image$A_5\times {}^2G(2,3)$