Subgroup ($H$) information
| Description: | $D_9:\GL(2,4)$ |
| Order: | \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \) |
| Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Exponent: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
| Generators: |
$\langle(1,4)(2,8,9,7,3,5), (2,3,9)(5,7,8), (10,12)(11,13), (1,4,6)(2,9,3)(5,7,8)(11,12,14), (1,3,5,4,2,7,6,9,8), (1,4,6)(2,9,3)(5,7,8)\rangle$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, and nonsolvable.
Ambient group ($G$) information
| Description: | $A_5\times {}^2G(2,3)$ |
| Order: | \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \) |
| Exponent: | \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $C_9:C_6\times S_5$, of order \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \) |
| $W$ | $D_9:\GL(2,4)$, of order \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $28$ |
| Möbius function | $-1$ |
| Projective image | $A_5\times {}^2G(2,3)$ |