Properties

Label 90720.g.84.a1.a1
Order $ 2^{3} \cdot 3^{3} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times \GL(2,4)$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Index: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,4)(2,8,9,7,3,5), (2,3,9)(5,7,8), (10,12)(11,13), (1,4,6)(2,9,3)(5,7,8)(11,12,14), (1,4,6)(2,9,3)(5,7,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $D_6\times S_5$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$W$$S_3\times A_5$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$S_3\times \GL(2,4)$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$A_5$
Minimal over-subgroups:$D_9:\GL(2,4)$
Maximal under-subgroups:$C_3\times \GL(2,4)$$C_6\times A_5$$S_3\times A_5$$C_6^2:C_6$$C_{15}:D_6$$C_3\times S_3^2$

Other information

Number of subgroups in this conjugacy class$84$
Möbius function$0$
Projective image$A_5\times {}^2G(2,3)$