Properties

Label 90720.g.168.a1.a1
Order $ 2^{2} \cdot 3^{3} \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{45}:C_6$
Order: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Index: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(11,12)(13,14), (10,12,13,14,11), (1,7,6,3,2,5)(8,9), (1,3,8,2,5,9,6,7,4), (1,2,6)(3,5,7)(4,8,9), (1,6,2)(3,5,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $D_{45}:C_{12}$, of order \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
$W$$D_{45}:C_6$, of order \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{45}:C_6$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$C_1$
Minimal over-subgroups:$D_5\times {}^2G(2,3)$$D_9:\GL(2,4)$
Maximal under-subgroups:$C_{45}:C_6$$C_9:C_{30}$$C_{45}:C_6$$C_{15}:D_6$$D_5\times D_9$$C_{18}:C_6$

Other information

Number of subgroups in this conjugacy class$168$
Möbius function$1$
Projective image$A_5\times {}^2G(2,3)$