Subgroup ($H$) information
Description: | $C_6^2$ |
Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(7,10)(8,9), (7,8)(9,10), (2,5,6), (1,3,4)(2,6,5)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, abelian (hence metabelian and an A-group), and metacyclic.
Ambient group ($G$) information
Description: | $S_4\times S_3^2$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Quotient group ($Q$) structure
Description: | $C_2\times D_6$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
$W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $24$ |
Projective image | $S_4\times S_3^2$ |