Subgroup ($H$) information
Description: | $C_6\times D_6$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(1,2)(3,5)(4,6), (7,10)(8,9), (7,8)(9,10), (2,5,6), (1,3,4)(2,6,5)\rangle$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $S_4\times S_3^2$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Quotient group ($Q$) structure
Description: | $D_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$\operatorname{res}(S)$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$W$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Other information
Möbius function | $-6$ |
Projective image | $S_4\times S_3^2$ |