Subgroup ($H$) information
Description: | $C_{21}:D_4$ |
Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Index: | \(5\) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$\left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right), \left(\begin{array}{rr}
43 & 0 \\
0 & 34
\end{array}\right), \left(\begin{array}{rr}
12 & 0 \\
0 & 88
\end{array}\right), \left(\begin{array}{rr}
144 & 0 \\
0 & 148
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 210
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $C_{105}:D_4$ |
Order: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_7:(C_2\times C_6\times F_5)$ |
$\operatorname{Aut}(H)$ | $C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
$\operatorname{res}(S)$ | $C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $5$ |
Möbius function | $-1$ |
Projective image | $D_{70}$ |