Subgroup ($H$) information
Description: | $C_2\times C_{42}$ |
Order: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Generators: |
$\left(\begin{array}{rr}
43 & 0 \\
0 & 34
\end{array}\right), \left(\begin{array}{rr}
12 & 0 \\
0 & 88
\end{array}\right), \left(\begin{array}{rr}
144 & 0 \\
0 & 148
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 210
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{105}:D_4$ |
Order: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_5$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Automorphism Group: | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_7:(C_2\times C_6\times F_5)$ |
$\operatorname{Aut}(H)$ | $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $5$ |
Projective image | $D_{70}$ |