Properties

Label 840.110.1.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 7 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{105}:D_4$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Index: $1$
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 60 & 0 \\ 0 & 102 \end{array}\right), \left(\begin{array}{rr} 4 & 0 \\ 0 & 49 \end{array}\right), \left(\begin{array}{rr} 144 & 0 \\ 0 & 148 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 210 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 65 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{105}:D_4$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_7:(C_2\times C_6\times F_5)$
$\operatorname{Aut}(H)$ $C_2^2\times C_7:(C_2\times C_6\times F_5)$
$W$$D_{70}$, of order \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{105}:D_4$
Complements:$C_1$
Maximal under-subgroups:$C_2\times C_{210}$$C_3\times D_{70}$$C_{105}:C_4$$C_{35}:D_4$$C_{21}:D_4$$C_{15}:D_4$

Other information

Möbius function$1$
Projective image$D_{70}$