Properties

Label 81000.t.45.h1
Order $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Index $ 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_{15}\times D_{15}):C_4$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Index: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ace, c^{3}, b^{6}, d^{10}, b^{3}, d^{3}e^{9}, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$\operatorname{Aut}(H)$ $C_{15}^2.C_4.C_2.C_2^4$
$W$$(C_{15}\times D_{15}):C_4$, of order \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$(C_{15}\times D_{15}):C_4$
Normal closure:$C_{15}\wr S_3:C_4$
Core:$C_3^2$
Minimal over-subgroups:$C_5^3.(C_6\times S_3).C_2$$C_{15}^2.C_6.C_2^2$
Maximal under-subgroups:$C_{15}^2:C_2^2$$C_{15}^2:C_4$$C_{15}^2:C_4$$D_5^2.S_3$$D_{15}:F_5$$D_5.S_3^2$$D_5.S_3^2$

Other information

Number of subgroups in this autjugacy class$180$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_{15}\wr S_3:C_4$