Properties

Label 81000.t.1.a1
Order $ 2^{3} \cdot 3^{4} \cdot 5^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Index: $1$
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $d^{3}e^{3}, c^{10}, b^{3}, c^{3}, b^{4}d^{3}e^{12}, c^{5}d^{10}, ace, b^{6}, e^{10}, e^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$\operatorname{Aut}(H)$ $C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$W$$C_{15}\wr S_3:C_4$, of order \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}\wr S_3:C_4$
Complements:$C_1$
Maximal under-subgroups:$C_{15}\wr S_3:C_2$$C_{15}^3.C_{12}$$C_{15}\wr C_3:C_4$$C_{15}^3.C_2^2.C_2$$C_{15}^2:(S_3\times F_5)$$C_{15}^2:C_6.D_6$$C_3^3:(S_3\times F_5)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{15}\wr S_3:C_4$