Properties

Label 81000.t.3.b1
Order $ 2^{3} \cdot 3^{3} \cdot 5^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:(S_3\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Index: \(3\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $e^{3}, d^{3}e^{3}, b^{3}, c^{3}, b^{4}d^{3}e^{12}, c^{10}, ace, b^{6}, d^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$\operatorname{Aut}(H)$ $(C_5^2\times C_{15}).C_6^2.C_2^4$
$W$$C_{15}^2:(S_3\times F_5)$, of order \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2:(S_3\times F_5)$
Normal closure:$C_{15}\wr S_3:C_4$
Core:$(C_5\times C_{15}^2):D_6$
Minimal over-subgroups:$C_{15}\wr S_3:C_4$
Maximal under-subgroups:$(C_5\times C_{15}^2):D_6$$(C_5\times C_{15}^2):C_{12}$$C_{15}^2:C_{15}:C_4$$C_5^3.(C_6\times S_3).C_2$$C_5^3:C_6.D_6$$C_{15}^2:(C_4\times S_3)$$C_3^2:(S_3\times F_5)$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{15}\wr S_3:C_4$