Properties

Label 81000.t.2.a1
Order $ 2^{2} \cdot 3^{4} \cdot 5^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\wr S_3:C_2$
Order: \(40500\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5^{3} \)
Index: \(2\)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $e^{3}, d^{3}e^{3}, b^{6}, c^{3}, b^{4}d^{3}e^{12}, c^{10}, ace, e^{10}, c^{5}d^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$\operatorname{Aut}(H)$ $(C_5\times C_{15}^2).C_6^2.C_2^4$
$W$$C_{15}^2:(S_3\times F_5)$, of order \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}\wr S_3:C_4$
Minimal over-subgroups:$C_{15}\wr S_3:C_4$
Maximal under-subgroups:$C_{15}\wr S_3$$C_{15}\wr C_3:C_2$$(C_3\times C_{15}^2):D_{15}$$(C_5\times C_{15}^2):D_6$$C_3^2\times C_5^3:D_6$$(C_3\times C_{15}^2):D_6$$C_3\wr S_3\times D_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{15}\wr S_3:C_4$