Properties

Label 81000.t.15.c1
Order $ 2^{3} \cdot 3^{3} \cdot 5^{2} $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: not computed
Generators: $ace, d^{10}, c^{3}e^{12}, b^{6}, c^{10}, d^{3}e^{9}, b^{3}, e^{10}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2.C_6.C_2^2$
Normal closure:$C_{15}\wr S_3:C_4$
Core:$C_3^3$
Minimal over-subgroups:$C_{15}^3.C_2^2.C_2$
Maximal under-subgroups:$C_3^2\times D_{15}:D_5$$C_5^2:(C_3^3:C_4)$$C_5^2:(C_3\times C_3^2:C_4)$$C_{15}^2:(C_2\times C_4)$$(C_{15}\times D_{15}):C_4$$(C_{15}\times D_{15}):C_4$$S_3\times C_3^2:F_5$$S_3\times C_3^2:F_5$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_{15}\wr S_3:C_4$