Properties

Label 768.1090235.6.a1
Order $ 2^{7} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^7$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(2\)
Generators: $\langle(1,4)(2,7)(3,5)(6,8)(11,12)(13,14), (2,7)(6,8), (2,6)(7,8), (1,4)(2,6)(3,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, abelian (hence metabelian and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^5:S_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.(S_3\times \GL(3,2))$, of order \(129024\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $\GL(7,2)$, of order \(163849992929280\)\(\medspace = 2^{21} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times \GL(3,2)$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^7$
Normalizer:$C_2^5:S_4$
Complements:$S_3$
Minimal over-subgroups:$C_2^5:A_4$$C_2^5:D_4$
Maximal under-subgroups:$C_2^6$$C_2^6$$C_2^6$$C_2^6$$C_2^6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$3$
Projective image$C_2^4:S_4$