Properties

Label 768.1090235.3.a1
Order $ 2^{8} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(3\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,4)(2,7)(3,5)(6,8)(11,12)(13,14), (2,7)(6,8), (1,2)(3,8)(4,7)(5,6)(11,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^5:S_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.(S_3\times \GL(3,2))$, of order \(129024\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^{15}.C_2^4.\PSL(2,7)$
$\operatorname{res}(S)$$C_2^5:\GL(3,2)$, of order \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^5:S_4$
Core:$C_2^7$
Minimal over-subgroups:$C_2^5:S_4$
Maximal under-subgroups:$C_2^7$$C_2^4:D_4$$C_2^5:C_4$$C_2^3\wr C_2$$C_2^3\wr C_2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2^4:S_4$