Subgroup ($H$) information
| Description: | $C_2\times C_4\times C_8$ |
| Order: | \(64\)\(\medspace = 2^{6} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Generators: |
$\left(\begin{array}{rr}
5 & 8 \\
4 & 5
\end{array}\right), \left(\begin{array}{rr}
11 & 3 \\
6 & 11
\end{array}\right), \left(\begin{array}{rr}
1 & 6 \\
0 & 1
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_2^2:C_4\times \GL(2,3)$ |
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_4.C_2^6.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2^5.D_4^2$, of order \(2048\)\(\medspace = 2^{11} \) |
| $\card{W}$ | \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | not computed |