Properties

Label 2048.cpg
Order \( 2^{11} \)
Exponent \( 2^{3} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 4
$\card{\Aut(G)}$ \( 2^{19} \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \)
Perm deg. $20$
Trans deg. not computed
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,5,7)(3,8)(4,9,13,16)(6,12)(10,14)(11,15)(18,19), (1,3,5,12)(2,6,7,8)(4,10,13,11)(9,14,16,15)(17,18,20,19), (1,4,5,13)(2,7)(6,14,8,15)(10,11)(17,18)(19,20), (1,3)(2,8,7,6)(4,11,13,10)(5,12)(9,14)(15,16)(17,18,20,19) >;
 
Copy content gap:G := Group( (1,2,5,7)(3,8)(4,9,13,16)(6,12)(10,14)(11,15)(18,19), (1,3,5,12)(2,6,7,8)(4,10,13,11)(9,14,16,15)(17,18,20,19), (1,4,5,13)(2,7)(6,14,8,15)(10,11)(17,18)(19,20), (1,3)(2,8,7,6)(4,11,13,10)(5,12)(9,14)(15,16)(17,18,20,19) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,7)(3,8)(4,9,13,16)(6,12)(10,14)(11,15)(18,19)', '(1,3,5,12)(2,6,7,8)(4,10,13,11)(9,14,16,15)(17,18,20,19)', '(1,4,5,13)(2,7)(6,14,8,15)(10,11)(17,18)(19,20)', '(1,3)(2,8,7,6)(4,11,13,10)(5,12)(9,14)(15,16)(17,18,20,19)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(76966446710103575400851060591901355238835536882036230218569377771553730044184842939514020699801757641326617132179,2048)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11;
 

Group information

Description:$C_2^5.D_4^2$
Order: \(2048\)\(\medspace = 2^{11} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(8\)\(\medspace = 2^{3} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5^4:\OD_{16}:C_4$, of order \(524288\)\(\medspace = 2^{19} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:$4$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8
Elements 1 351 1568 128 2048
Conjugacy classes   1 45 56 2 104
Divisions 1 45 55 2 103
Autjugacy classes 1 17 15 1 34

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8 16
Irr. complex chars.   16 36 38 12 2 104
Irr. rational chars. 16 36 38 10 3 103

Minimal presentations

Permutation degree:$20$
Transitive degree:not computed
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid b^{4}=c^{2}=d^{4}=e^{2}=f^{4}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 14432, 34629, 56, 25478, 34147, 11454, 8561, 101644, 31475, 7286, 10927, 158, 101381, 59152, 8047, 2822, 172487, 74994, 8477, 9896, 6387, 601, 260, 50696, 25363, 28169, 14100, 34858, 48421]); a,b,c,d,e,f,g,h := Explode([G.1, G.2, G.4, G.5, G.7, G.8, G.10, G.11]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "f", "f2", "g", "h"]);
 
Copy content gap:G := PcGroupCode(76966446710103575400851060591901355238835536882036230218569377771553730044184842939514020699801757641326617132179,2048); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.11;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(76966446710103575400851060591901355238835536882036230218569377771553730044184842939514020699801757641326617132179,2048)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(76966446710103575400851060591901355238835536882036230218569377771553730044184842939514020699801757641326617132179,2048)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11;
 
Permutation group:Degree $20$ $\langle(1,2,5,7)(3,8)(4,9,13,16)(6,12)(10,14)(11,15)(18,19), (1,3,5,12)(2,6,7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,5,7)(3,8)(4,9,13,16)(6,12)(10,14)(11,15)(18,19), (1,3,5,12)(2,6,7,8)(4,10,13,11)(9,14,16,15)(17,18,20,19), (1,4,5,13)(2,7)(6,14,8,15)(10,11)(17,18)(19,20), (1,3)(2,8,7,6)(4,11,13,10)(5,12)(9,14)(15,16)(17,18,20,19) >;
 
Copy content gap:G := Group( (1,2,5,7)(3,8)(4,9,13,16)(6,12)(10,14)(11,15)(18,19), (1,3,5,12)(2,6,7,8)(4,10,13,11)(9,14,16,15)(17,18,20,19), (1,4,5,13)(2,7)(6,14,8,15)(10,11)(17,18)(19,20), (1,3)(2,8,7,6)(4,11,13,10)(5,12)(9,14)(15,16)(17,18,20,19) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,7)(3,8)(4,9,13,16)(6,12)(10,14)(11,15)(18,19)', '(1,3,5,12)(2,6,7,8)(4,10,13,11)(9,14,16,15)(17,18,20,19)', '(1,4,5,13)(2,7)(6,14,8,15)(10,11)(17,18)(19,20)', '(1,3)(2,8,7,6)(4,11,13,10)(5,12)(9,14)(15,16)(17,18,20,19)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^5$ . $D_4^2$ (7) $(C_2^5.D_4)$ . $D_4$ (4) $(C_2^5:D_4)$ . $D_4$ (4) $(C_2^5:D_4)$ . $D_4$ (4) all 90
Aut. group: $\Aut(C_2\times C_4\times C_8)$ $\Aut(C_4.C_4^2)$ $\Aut(C_2^3.C_2^5)$ $\Aut(C_2^4.(C_2\times D_6))$ all 5

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{10}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 296 normal subgroups (52 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $D_4\times C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $D_4\times C_2^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.D_4^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $104 \times 104$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $103 \times 103$ rational character table.