Properties

Label 768.1087316.24.br1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 7 & 11 \\ 2 & 3 \end{array}\right), \left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 4 & 5 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2^2:C_4\times \GL(2,3)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4.C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_4\times C_8$
Normalizer:$C_2^2.D_4^2$
Normal closure:$C_2^3.S_4$
Core:$C_2^3$
Minimal over-subgroups:$C_2^3:C_8$$C_2^2.D_8$$C_2^2.D_8$$C_2\times C_4\times C_8$$C_2^2.C_4^2$$C_2^2.Q_{16}$$C_2^2.Q_{16}$
Maximal under-subgroups:$C_2\times C_8$$C_2\times C_8$$C_2^2\times C_4$$C_2\times C_8$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed