Subgroup ($H$) information
Description: | $C_5^2$ |
Order: | \(25\)\(\medspace = 5^{2} \) |
Index: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Exponent: | \(5\) |
Generators: |
$bd^{3}, c$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_5^3:C_6$ |
Order: | \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient set structure
Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 30T188.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_5\times F_{25}:C_2$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \) |
$\operatorname{Aut}(H)$ | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$\operatorname{res}(S)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(125\)\(\medspace = 5^{3} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $0$ |
Projective image | $C_5^3:C_6$ |