Show commands: Magma
Group invariants
Abstract group: | $C_5^3:C_6$ |
| |
Order: | $750=2 \cdot 3 \cdot 5^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $30$ |
| |
Transitive number $t$: | $188$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $10$ |
| |
Generators: | $(1,17,22,7,12,28)(2,18,21,8,11,27)(3,26,24,15,14,6)(4,25,23,16,13,5)(9,20,30,10,19,29)$, $(1,25,20,14,8)(2,26,19,13,7)(5,29,24,18,12)(6,30,23,17,11)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $10$: $D_{5}$ $30$: $D_5\times C_3$ $150$: $(C_5^2 : C_3):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 5: None
Degree 6: $C_6$
Degree 10: None
Degree 15: 15T30
Low degree siblings
15T30 x 8, 30T188 x 7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{15}$ | $125$ | $2$ | $15$ | $( 1,13)( 2,14)( 3,21)( 4,22)( 5,11)( 6,12)( 7, 8)( 9,16)(10,15)(17,29)(18,30)(19,25)(20,26)(23,24)(27,28)$ |
3A1 | $3^{10}$ | $25$ | $3$ | $20$ | $( 1,12,22)( 2,11,21)( 3,14,24)( 4,13,23)( 5,16,25)( 6,15,26)( 7,17,28)( 8,18,27)( 9,19,30)(10,20,29)$ |
3A-1 | $3^{10}$ | $25$ | $3$ | $20$ | $( 1,22,12)( 2,21,11)( 3,24,14)( 4,23,13)( 5,25,16)( 6,26,15)( 7,28,17)( 8,27,18)( 9,30,19)(10,29,20)$ |
5A1 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1,20, 8,25,14)( 2,19, 7,26,13)( 3,22,10,27,16)( 4,21, 9,28,15)( 5,24,12,29,18)( 6,23,11,30,17)$ |
5A2 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1, 8,14,20,25)( 2, 7,13,19,26)( 3,10,16,22,27)( 4, 9,15,21,28)( 5,12,18,24,29)( 6,11,17,23,30)$ |
5B1 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 1,20, 8,25,14)( 2,19, 7,26,13)( 3,16,27,10,22)( 4,15,28, 9,21)$ |
5B2 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 3,10,16,22,27)( 4, 9,15,21,28)( 5,29,24,18,12)( 6,30,23,17,11)$ |
5C1 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1,20, 8,25,14)( 2,19, 7,26,13)( 3,22,10,27,16)( 4,21, 9,28,15)( 5,29,24,18,12)( 6,30,23,17,11)$ |
5C2 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1,25,20,14, 8)( 2,26,19,13, 7)( 3,16,27,10,22)( 4,15,28, 9,21)( 5,29,24,18,12)( 6,30,23,17,11)$ |
5D1 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1,25,20,14, 8)( 2,26,19,13, 7)( 3,22,10,27,16)( 4,21, 9,28,15)( 5,12,18,24,29)( 6,11,17,23,30)$ |
5D2 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1,14,25, 8,20)( 2,13,26, 7,19)( 3,22,10,27,16)( 4,21, 9,28,15)( 5,12,18,24,29)( 6,11,17,23,30)$ |
5E1 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 1, 8,14,20,25)( 2, 7,13,19,26)( 3,16,27,10,22)( 4,15,28, 9,21)$ |
5E2 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 1,14,25, 8,20)( 2,13,26, 7,19)( 3,27,22,16,10)( 4,28,21,15, 9)$ |
5F1 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1, 8,14,20,25)( 2, 7,13,19,26)( 3,22,10,27,16)( 4,21, 9,28,15)( 5,29,24,18,12)( 6,30,23,17,11)$ |
5F2 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1,20, 8,25,14)( 2,19, 7,26,13)( 3,27,22,16,10)( 4,28,21,15, 9)( 5,18,29,12,24)( 6,17,30,11,23)$ |
5G1 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 3,27,22,16,10)( 4,28,21,15, 9)( 5,18,29,12,24)( 6,17,30,11,23)$ |
5G2 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 3,16,27,10,22)( 4,15,28, 9,21)( 5,12,18,24,29)( 6,11,17,23,30)$ |
5H1 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 1,25,20,14, 8)( 2,26,19,13, 7)( 3,27,22,16,10)( 4,28,21,15, 9)$ |
5H2 | $5^{4},1^{10}$ | $6$ | $5$ | $16$ | $( 1,20, 8,25,14)( 2,19, 7,26,13)( 3,22,10,27,16)( 4,21, 9,28,15)$ |
5I1 | $5^{2},1^{20}$ | $6$ | $5$ | $8$ | $( 5,12,18,24,29)( 6,11,17,23,30)$ |
5I2 | $5^{2},1^{20}$ | $6$ | $5$ | $8$ | $( 3,22,10,27,16)( 4,21, 9,28,15)$ |
5J1 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1,14,25, 8,20)( 2,13,26, 7,19)( 3,16,27,10,22)( 4,15,28, 9,21)( 5,29,24,18,12)( 6,30,23,17,11)$ |
5J2 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1, 8,14,20,25)( 2, 7,13,19,26)( 3,10,16,22,27)( 4, 9,15,21,28)( 5,18,29,12,24)( 6,17,30,11,23)$ |
5K1 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1,14,25, 8,20)( 2,13,26, 7,19)( 3,22,10,27,16)( 4,21, 9,28,15)( 5,24,12,29,18)( 6,23,11,30,17)$ |
5K2 | $5^{6}$ | $6$ | $5$ | $24$ | $( 1, 8,14,20,25)( 2, 7,13,19,26)( 3,27,22,16,10)( 4,28,21,15, 9)( 5,12,18,24,29)( 6,11,17,23,30)$ |
6A1 | $6^{5}$ | $125$ | $6$ | $25$ | $( 1,30,22,13,18, 4)( 2,29,21,14,17, 3)( 5,15,20,11,10,26)( 6,16,19,12, 9,25)( 7,24,28, 8,23,27)$ |
6A-1 | $6^{5}$ | $125$ | $6$ | $25$ | $( 1, 4,18,13,22,30)( 2, 3,17,14,21,29)( 5,26,10,11,20,15)( 6,25, 9,12,19,16)( 7,27,23, 8,28,24)$ |
15A1 | $15^{2}$ | $50$ | $15$ | $28$ | $( 1,27,24,20,16,12, 8, 3,29,25,22,18,14,10, 5)( 2,28,23,19,15,11, 7, 4,30,26,21,17,13, 9, 6)$ |
15A-1 | $15^{2}$ | $50$ | $15$ | $28$ | $( 1, 5,10,14,18,22,25,29, 3, 8,12,16,20,24,27)( 2, 6, 9,13,17,21,26,30, 4, 7,11,15,19,23,28)$ |
15A2 | $15^{2}$ | $50$ | $15$ | $28$ | $( 1,24,16, 8,29,22,14, 5,27,20,12, 3,25,18,10)( 2,23,15, 7,30,21,13, 6,28,19,11, 4,26,17, 9)$ |
15A-2 | $15^{2}$ | $50$ | $15$ | $28$ | $( 1,10,18,25, 3,12,20,27, 5,14,22,29, 8,16,24)( 2, 9,17,26, 4,11,19,28, 6,13,21,30, 7,15,23)$ |
Malle's constant $a(G)$: $1/8$
Character table
32 x 32 character table
Regular extensions
Data not computed