Properties

Label 750.30.3.a1.a1
Order $ 2 \cdot 5^{3} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:C_2$
Order: \(250\)\(\medspace = 2 \cdot 5^{3} \)
Index: \(3\)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{3}, c, d, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5^3:C_6$
Order: \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times F_{25}:C_2$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $\AGL(3,5)$, of order \(186000000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{6} \cdot 31 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_5\times F_{25}:C_2$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_5^3:C_6$, of order \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^3:C_6$
Complements:$C_3$
Minimal over-subgroups:$C_5^3:C_6$
Maximal under-subgroups:$C_5^3$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$

Other information

Möbius function$-1$
Projective image$C_5^3:C_6$