Subgroup ($H$) information
Description: | $C_{10}$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Generators: |
$\left(\begin{array}{ll}\alpha^{7} & \alpha^{7} \\ \alpha^{3} & 1 \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{4} & 0 \\ 0 & \alpha^{4} \\ \end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $\SL(2,9)$ |
Order: | \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $0$ |
The ambient group is nonabelian and quasisimple (hence nonsolvable and perfect).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(10\)\(\medspace = 2 \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{10}$ | |
Normalizer: | $C_5:C_4$ | |
Normal closure: | $\SL(2,9)$ | |
Core: | $C_2$ | |
Minimal over-subgroups: | $C_5:C_4$ | |
Maximal under-subgroups: | $C_5$ | $C_2$ |
Other information
Number of subgroups in this conjugacy class | $36$ |
Möbius function | $0$ |
Projective image | $A_6$ |