Properties

Label 720.409.144.a1.a1
Order $ 5 $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(5\)
Generators: $\left(\begin{array}{ll}\alpha^{3} & \alpha^{3} \\ \alpha^{7} & \alpha^{4} \\ \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\SL(2,9)$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and quasisimple (hence nonsolvable and perfect).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5:C_4$
Normal closure:$\SL(2,9)$
Core:$C_1$
Minimal over-subgroups:$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$0$
Projective image$\SL(2,9)$