Subgroup ($H$) information
Description: | $C_{193}:C_3$ |
Order: | \(579\)\(\medspace = 3 \cdot 193 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(579\)\(\medspace = 3 \cdot 193 \) |
Generators: |
$a^{4}b^{2}, b^{3}$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Ambient group ($G$) information
Description: | $C_{579}:C_{12}$ |
Order: | \(6948\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 193 \) |
Exponent: | \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_{12}$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{579}.C_{192}.C_2$ |
$\operatorname{Aut}(H)$ | $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
$W$ | $C_{193}:C_{12}$, of order \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_{579}:C_{12}$ |