-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': False, 'ambient': '6948.a', 'ambient_counter': 1, 'ambient_order': 6948, 'ambient_tex': 'C_{579}:C_{12}', 'central': False, 'central_factor': False, 'centralizer_order': 3, 'characteristic': False, 'core_order': 579, 'counter': 14, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '6948.a.12.b1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '12.b1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '12.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 12, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{12}', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '579.1', 'subgroup_hash': 1, 'subgroup_order': 579, 'subgroup_tex': 'C_{193}:C_3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '6948.a', 'aut_centralizer_order': None, 'aut_label': '12.b1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '2316.a1.a1', 'complements': ['579.a1.a1', '579.b1.b1', '579.b1.c1'], 'conjugacy_class_count': 1, 'contained_in': ['4.a1.a1', '6.b1.a1'], 'contains': ['36.a1.a1', '2316.b1.a1'], 'core': '12.b1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [1831, 3372, 2557, 9364, 2600, 5072, 3365, 3210], 'generators': [28, 36], 'label': '6948.a.12.b1.a1', 'mobius_quo': 0, 'mobius_sub': 0, 'normal_closure': '12.b1.a1', 'normal_contained_in': ['4.a1.a1', '6.b1.a1'], 'normal_contains': ['36.a1.a1'], 'normalizer': '1.a1.a1', 'old_label': '12.b1.a1', 'projective_image': '6948.a', 'quotient_action_image': '4.1', 'quotient_action_kernel': '3.1', 'quotient_action_kernel_order': 3, 'quotient_fusion': None, 'short_label': '12.b1.a1', 'subgroup_fusion': None, 'weyl_group': '2316.b'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': False, 'abelian_quotient': '3.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 37056, 'aut_gen_orders': [192, 193], 'aut_gens': [[1, 3], [1, 114], [445, 3]], 'aut_group': '37056.a', 'aut_hash': 1432757702296672986, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 37056, 'aut_permdeg': 193, 'aut_perms': [39053339670721327572543569039395005031096653245802774324204298263788953285647090763476541643345676324473056783378543774660072842471514711015868302482279618194714261105949788702112347134548908091797187306612050281053946057960581089182560863568602379974419627409015496038525465690691519350455551181816446171767151758025418672254963521648341121096265656543605694, 27537046770698028029509447452483255633857520585283838421883440607221768231104384860166214394878916709368227289860720561987161029954363059081082583776521393368876604263321802053274125013685434525755757109968295753899028688290909515762484435944252483952769187280784953622110633939104871157686235761278347542756654691358393510201744955724775767189520816064076473], 'aut_phi_ratio': 96.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [3, 193, 1, 2], [193, 3, 64, 1]], 'aut_supersolvable': True, 'aut_tex': 'F_{193}', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 37056, 'autcentquo_group': '37056.a', 'autcentquo_hash': 1432757702296672986, 'autcentquo_nilpotent': False, 'autcentquo_order': 37056, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{193}', 'cc_stats': [[1, 1, 1], [3, 193, 2], [193, 3, 64]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '579.1', 'commutator_count': 1, 'commutator_label': '193.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['3.1', '193.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [3, 193, 2, 1], [193, 3, 64, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 8, 'exponent': 579, 'exponents_of_order': [1, 1], 'factors_of_aut_order': [2, 3, 193], 'factors_of_order': [3, 193], 'faithful_reps': [[3, 0, 64]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '579.1', 'hash': 1, 'hyperelementary': 3, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 579, 'inner_gen_orders': [3, 193], 'inner_gens': [[1, 252], [331, 3]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 579, 'inner_split': True, 'inner_tex': 'C_{193}:C_3', 'inner_used': [1, 2], 'irrC_degree': 3, 'irrQ_degree': 192, 'irrQ_dim': 192, 'irrR_degree': 6, 'irrep_stats': [[1, 3], [3, 64]], 'label': '579.1', 'linC_count': 64, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 192, 'linQ_degree_count': 1, 'linQ_dim': 192, 'linQ_dim_count': 1, 'linR_count': 32, 'linR_degree': 6, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C193:C3', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 3, 'number_conjugacy_classes': 67, 'number_divisions': 3, 'number_normal_subgroups': 3, 'number_subgroup_autclasses': 4, 'number_subgroup_classes': 4, 'number_subgroups': 196, 'old_label': None, 'order': 579, 'order_factorization_type': 11, 'order_stats': [[1, 1], [3, 386], [193, 192]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 64, 'outer_gen_orders': [64], 'outer_gen_pows': [2], 'outer_gens': [[1, 447]], 'outer_group': '64.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 64, 'outer_perms': [2014594330940748694500315964401030837224914941382363373987443624058107002128920420940313], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{64}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 193, 'pgroup': 0, 'primary_abelian_invariants': [3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 1], [192, 1]], 'representations': {'PC': {'code': 12312959, 'gens': [1, 2], 'pres': [2, -3, -193, 1009]}, 'GLFp': {'d': 2, 'p': 193, 'gens': [7189251, 603880789]}, 'Perm': {'d': 193, 'gens': [155072081769025479153068005764655310398056985534484553249510570014180068596765767602220702796160851423904603713380353967374496827693048038873577863314427425322295450355127868085281304176469528282592426059218603719048013636231661630498986145587733965119292349387964516295495591000760117599793495606069314966880735163520645227705730930758607614125986326901066, 68159384284216415434244229769722897785298203470789342442007462716964519312047994015473537393503254737883254692840162175520283792238796194464802516244938515792342454228783658226402112128483243230028631870556954631033853483990335822197126471859553676149202878029250924171717175622127511797106029233701101543903723520000000000000000000000000000000000000000000000]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{193}:C_3', 'transitive_degree': 193, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '36.8', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 37056, 'aut_gen_orders': [96, 192, 3], 'aut_gens': [[1, 12], [6541, 5280], [2941, 264], [457, 3612]], 'aut_group': None, 'aut_hash': 9034218873832238734, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 222336, 'aut_permdeg': 772, 'aut_perms': [371137491801037258027492775542723235770300719802765648134128892720217058441958843151951767946327149691265522811303463965356007007428023021032479277465961877890676992472270673550792127983880997153410229057313403208152866198130776079687862010303389574648207101067866607443169544067036240662893223364803785110600232842853551631816987011783895200319306150505959855521508817051925429473980180126988655369245675922858220815012181076703143742917795542275789970441201026892364489065291466060254084245928622758135785570932038092860568961917135815638621607343643267054157776798416830165519580800977785503269837654596236596031342238590541671777537476609253808763229872971568182713280965362393586279573921776360105421339385138398596770629421334486928902247353203253905733526216381789845387582881290708527099574554675252036249920459277917418895378868388988579736973653129111514476630623460343831661130312231362272939631574119270327921562969595889210189978176761833514720158677398068833430736798620931484762123889874267875156305028275527539040564516768693585078008285734145138984990974829264077480430936699830888289242343272174921990963431573092939918433538652817727501560199243582467369702991746286090268281147979711865254893862709885929747937945704956133716661062571723475703263822700453378572737920422464708749408955397365618963889940924106056454490912327067283161255146799022958408582365092598865471104662573257047022745236568667630724987518511547311661359800483014570571467241321609619361084776577129154481778929594831416544618957966294463812324997476930440765520586238506179444007145853701459181662509119937462598258768113061575863471127794029771461798544748712333590042189542316995865133087582700290016387728852035802138424128089003034388424629464704109044467943529063575105865254438009235133313177614420942411107499451472177946826877825604422417769164622926627091436439636245581426270196973373259784440, 391116145417704187889556078829781219777293928979390550459381544089552297932673916899986865748552603493903886949218161227302666806031154359851103826680316770256194169745146830930856271429506758419002857767402341723635385062044046748905309141232899489175790518870943232245001055330120836613164986803686856265182865667134665571077332068954382127467842458766180864484144123177054380852501806693909042677146036048748903418355495605569393355081955901018105817356554400374513956757580390635717460583859715498043185322805488894934684178335843592937483125088797733924797939224383323368703764495383563454724472565258869136829831144130507028594843824237284728970712494023276956620045501955499223560217359976408644009446538778324583531332124473147751206626058413859705763715424037253377627683899273154437472373275721833932491901907860849355907900855441981201794885223373404787604114283392102738624502413347290114125101400006654884487537415608709883559422243255050233866424254023602419051148414948980884386665254148923950511468809797847667168275808685230025107460123553598742553361062134422946469347517339750242824544565422697387290511503771694543088276585865019332316569672725577383885556939631504161011038481596040267991588894145129390735745981959191378806205967473602487052636248810624968769689757609931803800024434887216407410991708500950073716115830316863007345796677329178229702666959464454241661178045094593804843302569241239122594496301013088871330456188707905090034455994115583053221149937996058190504886430528854594081282666409273976986371574727211729417502182142835242750552013826619222032797820442140540675955133709992364067888167907940747799101887976626285577227119209004524178287524374992474422655054353769504636695332547555908496805220374150371266996819224030756549023518463887300986892908603937631609553721283275274017623542375749160489369858688154853086708513781183274744862440664855805196736, 417686029655046367793696752761718471607349568567605695057015070803587137010932725523438801409693127294242848057252492782238090100993079560216850999905863733019490469167055749762702389036100319938710738853264762457360461549495152377263878630315611121190248966968644546220281167008331439066221945072015832429705008301095830203420813129091208879149422280912713765341903289188923815093393941227620218308274920484938295399328528020442050578027796845194279770518276892154160930387276117194294963036829536759644629965114624519167094646926478448578919170176081740105687518266237049685904763032878948141829375788712447267299691222615192295163376202531996826373416751930887365135877107227235607661436582801234164227745851012153382947515051720883640898009054602920213782221881248379434532791847407709864176580408565696249064026451725594853732750888080960467992484222790134384549959095497561729134869926600668643338418559489423566639837198359877667807858181804324896763117002949705407114887800939694547535692585729435009396096800998021479605928989568758783772127974594544208495265745991453108333464813426531770787668583604079835161731338492396193839429001125631342201085635134058247594449735083921497644736474909769024186040576010857954849202539213365828952575372420143519878903697138296620341709874869884183838544619065997152246762145599890576366259779784787724457293284577838419486481582022112326195622800018616862453070283289374022378223587920091384174953418116325073154735698575414699499575718058613208275797500326758375648538673921057355910671403337404423337587115501031584248255045479446406053970497389661639479989176740830197945620390645429622589194088419439446372096358359146651858284881301251160963561316645007542295646299960159924817050025801528183478201900686387599164790400735801816340218917225504723208186634081449825225931782108209328460515497174639545653226343715487152805842679416812347633723], 'aut_phi_ratio': 96.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 193, 1, 1], [3, 1, 2, 1], [3, 193, 3, 2], [4, 193, 1, 2], [6, 193, 2, 1], [6, 193, 3, 2], [12, 193, 2, 2], [12, 193, 3, 4], [193, 12, 16, 1], [579, 12, 32, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{579}.C_{192}.C_2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 37056, 'autcentquo_group': '37056.a', 'autcentquo_hash': 1432757702296672986, 'autcentquo_nilpotent': False, 'autcentquo_order': 37056, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{193}', 'cc_stats': [[1, 1, 1], [2, 193, 1], [3, 1, 2], [3, 193, 6], [4, 193, 2], [6, 193, 8], [12, 193, 16], [193, 12, 16], [579, 12, 32]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '2316.b', 'commutator_count': 1, 'commutator_label': '193.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1', '3.1', '193.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2316.b', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 193, 1, 1], [3, 1, 2, 1], [3, 193, 2, 3], [4, 193, 2, 1], [6, 193, 2, 4], [12, 193, 4, 4], [193, 12, 16, 1], [579, 12, 32, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 96, 'exponent': 2316, 'exponents_of_order': [2, 2, 1], 'factors_of_aut_order': [2, 3, 193], 'factors_of_order': [2, 3, 193], 'faithful_reps': [[12, 0, 32]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '6948.a', 'hash': 163829408175284635, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 2316, 'inner_gen_orders': [12, 193], 'inner_gens': [[1, 1560], [5401, 12]], 'inner_hash': 3, 'inner_nilpotent': False, 'inner_order': 2316, 'inner_split': False, 'inner_tex': 'C_{193}:C_{12}', 'inner_used': [1, 2], 'irrC_degree': 12, 'irrQ_degree': 384, 'irrQ_dim': 384, 'irrR_degree': 24, 'irrep_stats': [[1, 36], [12, 48]], 'label': '6948.a', 'linC_count': 32, 'linC_degree': 12, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 194, 'linQ_degree_count': 6, 'linQ_dim': 194, 'linQ_dim_count': 6, 'linR_count': 192, 'linR_degree': 14, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C579:C12', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 18, 'number_characteristic_subgroups': 11, 'number_conjugacy_classes': 84, 'number_divisions': 17, 'number_normal_subgroups': 20, 'number_subgroup_autclasses': 24, 'number_subgroup_classes': 36, 'number_subgroups': 3108, 'old_label': None, 'order': 6948, 'order_factorization_type': 222, 'order_stats': [[1, 1], [2, 193], [3, 1160], [4, 386], [6, 1544], [12, 3088], [193, 192], [579, 384]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 48, 'outer_gen_orders': [2, 48], 'outer_gen_pows': [0, 3], 'outer_gens': [[2317, 6936], [4633, 5124]], 'outer_group': '96.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 96, 'outer_permdeg': 19, 'outer_perms': [6423384156578665, 13560771052696588], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3\\times C_{16}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 196, 'pgroup': 0, 'primary_abelian_invariants': [4, 3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 9], [4, 4], [192, 1], [384, 1]], 'representations': {'PC': {'code': '2484544393403494715474679500204522112733094646143', 'gens': [1, 4], 'pres': [5, -2, -2, -3, -3, -193, 10, 26, 31203, 13088, 18073, 78, 117004, 49059, 24314]}, 'GLFp': {'d': 2, 'p': 193, 'gens': [7189251, 7189106, 776418240]}, 'Perm': {'d': 196, 'gens': [26997883370683755077834348632583544075689123646545924239333415195270970618446762803151534820839084168332574930202330878136717844416248344506188842014859582665659028857979420994463281937424786636465603603264193802991238759711988872255230924689688520127256054785069161550511582761091078406738638113786583221698027154119610457882727594361829212191882754524688969640, 2631777980035845350135382426734565011034447922052599891420990730113738056753597827295822581371823538584720697912300444475715628525068356947731137665342306565309372655949933937527381197282002066466381013963617266693057375177357599189542857037592345127941010427549992337437299501736403248100214772049765657481237711923522648211336620799430801152351097935929224721400, 53649271295476239427485909099775454234166999615723762995659120830603826843282000977475945190144260550089319006283869137285687970646473984268535334212926921323592118929967245128994273681836852701890011310405127668484185849915818135096279080876220528005067781820885549539553055118957409493114150463364122295060375962689736182697797098731623576456621354100625274163]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 12], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{579}:C_{12}', 'transitive_degree': 579, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '12.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 2, 'aut_gen_orders': [2, 2], 'aut_gens': [[1], [5], [7]], 'aut_group': '4.2', 'aut_hash': 2, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 4, 'aut_permdeg': 4, 'aut_perms': [1, 6], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 2, 1], [4, 1, 2, 1], [6, 1, 2, 1], [12, 1, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [3, 1, 2], [4, 1, 2], [6, 1, 2], [12, 1, 4]], 'center_label': '12.2', 'center_order': 12, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['4.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 2, 1], [4, 1, 2, 1], [6, 1, 2, 1], [12, 1, 4, 1]], 'element_repr_type': 'PC', 'elementary': 6, 'eulerian_function': 1, 'exponent': 12, 'exponents_of_order': [2, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 3], 'faithful_reps': [[1, 0, 4]], 'familial': True, 'frattini_label': '2.1', 'frattini_quotient': '6.2', 'hash': 2, 'hyperelementary': 6, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 4, 'irrQ_dim': 4, 'irrR_degree': 2, 'irrep_stats': [[1, 12]], 'label': '12.2', 'linC_count': 4, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 3, 'linQ_dim': 4, 'linQ_dim_count': 3, 'linR_count': 2, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C12', 'ngens': 3, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 6, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 12, 'number_divisions': 6, 'number_normal_subgroups': 6, 'number_subgroup_autclasses': 6, 'number_subgroup_classes': 6, 'number_subgroups': 6, 'old_label': None, 'order': 12, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 1], [3, 2], [4, 2], [6, 2], [12, 4]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [0, 0], 'outer_gens': [[5], [7]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 7, 'pgroup': 0, 'primary_abelian_invariants': [4, 3], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 3], [4, 1]], 'representations': {'PC': {'code': 3865, 'gens': [1], 'pres': [3, -2, -2, -3, 6, 16]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [20970031]}, 'GLFp': {'d': 2, 'p': 5, 'gens': [619]}, 'Perm': {'d': 7, 'gens': [2400, 4, 744]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [12], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{12}', 'transitive_degree': 12, 'wreath_data': None, 'wreath_product': False}