Properties

Label 6948.a.579.a1.a1
Order $ 2^{2} \cdot 3 $
Index $ 3 \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(579\)\(\medspace = 3 \cdot 193 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, b^{193}, a^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{579}:C_{12}$
Order: \(6948\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 193 \)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{192}.C_2$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{12}$
Normalizer:$C_3\times C_{12}$
Normal closure:$C_{193}:C_{12}$
Core:$C_3$
Minimal over-subgroups:$C_{193}:C_{12}$$C_3\times C_{12}$
Maximal under-subgroups:$C_6$$C_4$

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$1$
Projective image$C_{193}:C_{12}$