Properties

Label 37056.a
Order \( 2^{6} \cdot 3 \cdot 193 \)
Exponent \( 2^{6} \cdot 3 \cdot 193 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{6} \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{6} \cdot 3 \cdot 193 \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $193$
Trans deg. $193$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 193 | (2,4,10,28,68,97,122,66,54,121,164,189,176,145,126,128,86,130,112,132,60,24,21,53,119,108,183,120,167,144,172,94,40,15,5,13,34,84,165,133,143,109,142,147,160,191,178,100,177,117,181,104,180,186,111,141,137,173,93,151,72,150,192,174,95,125,56,22,12,33,81,48,63,136,175,187,129,59,114,51,99,152,77,38,14,37,61,64,46,105,50,113,118,58,23,8,3,7,19,49,110,91,80,39,32,79,159,182,149,184,106,103,135,101,69,85,43,16,11,31,76,124,153,78,158,185,155,139,65,26,9,25,62,134,161,98,89,123,90,170,171,169,190,131,154,83,163,127,188,146,70,92,87,168,140,156,115,166,193,162,138,107,47,18,20,52,116,55,36,88,157,179,102,44,73,29,71,148,96,41,27,67,42,35,57,75,30,74,82,45,17,6), (1,2,5,14,12,4,11,32,80,36,13,35,87,169,90,37,89,94,164,83,33,82,108,47,30,10,29,72,102,78,31,77,157,187,125,79,160,97,41,15,39,92,172,119,151,88,68,144,167,86,34,85,130,59,23,57,126,84,166,188,168,100,43,99,176,190,184,112,49,111,170,148,114,113,133,61,24,8,22,55,123,154,75,153,95,40,93,128,58,127,189,186,165,116,174,163,192,193,181,162,81,161,146,182,104,45,103,140,65,138,183,105,177,109,48,18,6,16,42,98,74,73,152,147,70,28,69,145,178,149,71,60,131,173,180,150,134,106,46,17,44,101,132,62,135,158,185,110,136,156,76,155,141,66,26,38,91,171,121,107,179,175,96,53,120,129,115,51,19,50,56,124,118,52,117,159,139,143,67,142,191,137,64,25,63,122,54,21,7,20,27,9,3) >;
 
Copy content gap:G := Group( (2,4,10,28,68,97,122,66,54,121,164,189,176,145,126,128,86,130,112,132,60,24,21,53,119,108,183,120,167,144,172,94,40,15,5,13,34,84,165,133,143,109,142,147,160,191,178,100,177,117,181,104,180,186,111,141,137,173,93,151,72,150,192,174,95,125,56,22,12,33,81,48,63,136,175,187,129,59,114,51,99,152,77,38,14,37,61,64,46,105,50,113,118,58,23,8,3,7,19,49,110,91,80,39,32,79,159,182,149,184,106,103,135,101,69,85,43,16,11,31,76,124,153,78,158,185,155,139,65,26,9,25,62,134,161,98,89,123,90,170,171,169,190,131,154,83,163,127,188,146,70,92,87,168,140,156,115,166,193,162,138,107,47,18,20,52,116,55,36,88,157,179,102,44,73,29,71,148,96,41,27,67,42,35,57,75,30,74,82,45,17,6), (1,2,5,14,12,4,11,32,80,36,13,35,87,169,90,37,89,94,164,83,33,82,108,47,30,10,29,72,102,78,31,77,157,187,125,79,160,97,41,15,39,92,172,119,151,88,68,144,167,86,34,85,130,59,23,57,126,84,166,188,168,100,43,99,176,190,184,112,49,111,170,148,114,113,133,61,24,8,22,55,123,154,75,153,95,40,93,128,58,127,189,186,165,116,174,163,192,193,181,162,81,161,146,182,104,45,103,140,65,138,183,105,177,109,48,18,6,16,42,98,74,73,152,147,70,28,69,145,178,149,71,60,131,173,180,150,134,106,46,17,44,101,132,62,135,158,185,110,136,156,76,155,141,66,26,38,91,171,121,107,179,175,96,53,120,129,115,51,19,50,56,124,118,52,117,159,139,143,67,142,191,137,64,25,63,122,54,21,7,20,27,9,3) );
 
Copy content sage:G = PermutationGroup(['(2,4,10,28,68,97,122,66,54,121,164,189,176,145,126,128,86,130,112,132,60,24,21,53,119,108,183,120,167,144,172,94,40,15,5,13,34,84,165,133,143,109,142,147,160,191,178,100,177,117,181,104,180,186,111,141,137,173,93,151,72,150,192,174,95,125,56,22,12,33,81,48,63,136,175,187,129,59,114,51,99,152,77,38,14,37,61,64,46,105,50,113,118,58,23,8,3,7,19,49,110,91,80,39,32,79,159,182,149,184,106,103,135,101,69,85,43,16,11,31,76,124,153,78,158,185,155,139,65,26,9,25,62,134,161,98,89,123,90,170,171,169,190,131,154,83,163,127,188,146,70,92,87,168,140,156,115,166,193,162,138,107,47,18,20,52,116,55,36,88,157,179,102,44,73,29,71,148,96,41,27,67,42,35,57,75,30,74,82,45,17,6)', '(1,2,5,14,12,4,11,32,80,36,13,35,87,169,90,37,89,94,164,83,33,82,108,47,30,10,29,72,102,78,31,77,157,187,125,79,160,97,41,15,39,92,172,119,151,88,68,144,167,86,34,85,130,59,23,57,126,84,166,188,168,100,43,99,176,190,184,112,49,111,170,148,114,113,133,61,24,8,22,55,123,154,75,153,95,40,93,128,58,127,189,186,165,116,174,163,192,193,181,162,81,161,146,182,104,45,103,140,65,138,183,105,177,109,48,18,6,16,42,98,74,73,152,147,70,28,69,145,178,149,71,60,131,173,180,150,134,106,46,17,44,101,132,62,135,158,185,110,136,156,76,155,141,66,26,38,91,171,121,107,179,175,96,53,120,129,115,51,19,50,56,124,118,52,117,159,139,143,67,142,191,137,64,25,63,122,54,21,7,20,27,9,3)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(45515334396045693417352492702089104139933519998455127445076196666909319532055151772031,37056)'); a = G.1; b = G.8;
 

Group information

Description:$F_{193}$
Order: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_3$, $C_{193}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24 32 48 64 96 192 193
Elements 1 193 386 386 386 772 772 1544 1544 3088 3088 6176 6176 12352 192 37056
Conjugacy classes   1 1 2 2 2 4 4 8 8 16 16 32 32 64 1 193
Divisions 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15
Autjugacy classes 1 1 2 2 2 4 4 8 8 16 16 32 32 64 1 193

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8 16 32 64 192
Irr. complex chars.   192 0 0 0 0 0 0 1 193
Irr. rational chars. 2 3 2 2 2 2 1 1 15

Minimal presentations

Permutation degree:$193$
Transitive degree:$193$
Rank: $2$
Inequivalent generating pairs: $24576$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 192 192 192
Arbitrary 192 192 192

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\AGL(1,193)$
Presentation: $\langle a, b \mid a^{192}=b^{193}=1, b^{a}=b^{38} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([8, -2, -2, -2, -2, -2, -2, -3, -193, 16, 41, 66, 91, 116, 141, 466951, 571407, 482327, 211999, 99879, 41903, 20791]); a,b := Explode([G.1, G.8]); AssignNames(~G, ["a", "a2", "a4", "a8", "a16", "a32", "a64", "b"]);
 
Copy content gap:G := PcGroupCode(45515334396045693417352492702089104139933519998455127445076196666909319532055151772031,37056); a := G.1; b := G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(45515334396045693417352492702089104139933519998455127445076196666909319532055151772031,37056)'); a = G.1; b = G.8;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(45515334396045693417352492702089104139933519998455127445076196666909319532055151772031,37056)'); a = G.1; b = G.8;
 
Permutation group:Degree $193$ $\langle(2,4,10,28,68,97,122,66,54,121,164,189,176,145,126,128,86,130,112,132,60,24,21,53,119,108,183,120,167,144,172,94,40,15,5,13,34,84,165,133,143,109,142,147,160,191,178,100,177,117,181,104,180,186,111,141,137,173,93,151,72,150,192,174,95,125,56,22,12,33,81,48,63,136,175,187,129,59,114,51,99,152,77,38,14,37,61,64,46,105,50,113,118,58,23,8,3,7,19,49,110,91,80,39,32,79,159,182,149,184,106,103,135,101,69,85,43,16,11,31,76,124,153,78,158,185,155,139,65,26,9,25,62,134,161,98,89,123,90,170,171,169,190,131,154,83,163,127,188,146,70,92,87,168,140,156,115,166,193,162,138,107,47,18,20,52,116,55,36,88,157,179,102,44,73,29,71,148,96,41,27,67,42,35,57,75,30,74,82,45,17,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 193 | (2,4,10,28,68,97,122,66,54,121,164,189,176,145,126,128,86,130,112,132,60,24,21,53,119,108,183,120,167,144,172,94,40,15,5,13,34,84,165,133,143,109,142,147,160,191,178,100,177,117,181,104,180,186,111,141,137,173,93,151,72,150,192,174,95,125,56,22,12,33,81,48,63,136,175,187,129,59,114,51,99,152,77,38,14,37,61,64,46,105,50,113,118,58,23,8,3,7,19,49,110,91,80,39,32,79,159,182,149,184,106,103,135,101,69,85,43,16,11,31,76,124,153,78,158,185,155,139,65,26,9,25,62,134,161,98,89,123,90,170,171,169,190,131,154,83,163,127,188,146,70,92,87,168,140,156,115,166,193,162,138,107,47,18,20,52,116,55,36,88,157,179,102,44,73,29,71,148,96,41,27,67,42,35,57,75,30,74,82,45,17,6), (1,2,5,14,12,4,11,32,80,36,13,35,87,169,90,37,89,94,164,83,33,82,108,47,30,10,29,72,102,78,31,77,157,187,125,79,160,97,41,15,39,92,172,119,151,88,68,144,167,86,34,85,130,59,23,57,126,84,166,188,168,100,43,99,176,190,184,112,49,111,170,148,114,113,133,61,24,8,22,55,123,154,75,153,95,40,93,128,58,127,189,186,165,116,174,163,192,193,181,162,81,161,146,182,104,45,103,140,65,138,183,105,177,109,48,18,6,16,42,98,74,73,152,147,70,28,69,145,178,149,71,60,131,173,180,150,134,106,46,17,44,101,132,62,135,158,185,110,136,156,76,155,141,66,26,38,91,171,121,107,179,175,96,53,120,129,115,51,19,50,56,124,118,52,117,159,139,143,67,142,191,137,64,25,63,122,54,21,7,20,27,9,3) >;
 
Copy content gap:G := Group( (2,4,10,28,68,97,122,66,54,121,164,189,176,145,126,128,86,130,112,132,60,24,21,53,119,108,183,120,167,144,172,94,40,15,5,13,34,84,165,133,143,109,142,147,160,191,178,100,177,117,181,104,180,186,111,141,137,173,93,151,72,150,192,174,95,125,56,22,12,33,81,48,63,136,175,187,129,59,114,51,99,152,77,38,14,37,61,64,46,105,50,113,118,58,23,8,3,7,19,49,110,91,80,39,32,79,159,182,149,184,106,103,135,101,69,85,43,16,11,31,76,124,153,78,158,185,155,139,65,26,9,25,62,134,161,98,89,123,90,170,171,169,190,131,154,83,163,127,188,146,70,92,87,168,140,156,115,166,193,162,138,107,47,18,20,52,116,55,36,88,157,179,102,44,73,29,71,148,96,41,27,67,42,35,57,75,30,74,82,45,17,6), (1,2,5,14,12,4,11,32,80,36,13,35,87,169,90,37,89,94,164,83,33,82,108,47,30,10,29,72,102,78,31,77,157,187,125,79,160,97,41,15,39,92,172,119,151,88,68,144,167,86,34,85,130,59,23,57,126,84,166,188,168,100,43,99,176,190,184,112,49,111,170,148,114,113,133,61,24,8,22,55,123,154,75,153,95,40,93,128,58,127,189,186,165,116,174,163,192,193,181,162,81,161,146,182,104,45,103,140,65,138,183,105,177,109,48,18,6,16,42,98,74,73,152,147,70,28,69,145,178,149,71,60,131,173,180,150,134,106,46,17,44,101,132,62,135,158,185,110,136,156,76,155,141,66,26,38,91,171,121,107,179,175,96,53,120,129,115,51,19,50,56,124,118,52,117,159,139,143,67,142,191,137,64,25,63,122,54,21,7,20,27,9,3) );
 
Copy content sage:G = PermutationGroup(['(2,4,10,28,68,97,122,66,54,121,164,189,176,145,126,128,86,130,112,132,60,24,21,53,119,108,183,120,167,144,172,94,40,15,5,13,34,84,165,133,143,109,142,147,160,191,178,100,177,117,181,104,180,186,111,141,137,173,93,151,72,150,192,174,95,125,56,22,12,33,81,48,63,136,175,187,129,59,114,51,99,152,77,38,14,37,61,64,46,105,50,113,118,58,23,8,3,7,19,49,110,91,80,39,32,79,159,182,149,184,106,103,135,101,69,85,43,16,11,31,76,124,153,78,158,185,155,139,65,26,9,25,62,134,161,98,89,123,90,170,171,169,190,131,154,83,163,127,188,146,70,92,87,168,140,156,115,166,193,162,138,107,47,18,20,52,116,55,36,88,157,179,102,44,73,29,71,148,96,41,27,67,42,35,57,75,30,74,82,45,17,6)', '(1,2,5,14,12,4,11,32,80,36,13,35,87,169,90,37,89,94,164,83,33,82,108,47,30,10,29,72,102,78,31,77,157,187,125,79,160,97,41,15,39,92,172,119,151,88,68,144,167,86,34,85,130,59,23,57,126,84,166,188,168,100,43,99,176,190,184,112,49,111,170,148,114,113,133,61,24,8,22,55,123,154,75,153,95,40,93,128,58,127,189,186,165,116,174,163,192,193,181,162,81,161,146,182,104,45,103,140,65,138,183,105,177,109,48,18,6,16,42,98,74,73,152,147,70,28,69,145,178,149,71,60,131,173,180,150,134,106,46,17,44,101,132,62,135,158,185,110,136,156,76,155,141,66,26,38,91,171,121,107,179,175,96,53,120,129,115,51,19,50,56,124,118,52,117,159,139,143,67,142,191,137,64,25,63,122,54,21,7,20,27,9,3)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 176 & 0 \\ 0 & 170 \end{array}\right), \left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{193})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(193) | [[176, 0, 0, 170], [1, 1, 0, 1]] >;
 
Copy content gap:G := Group([[[ Z(193)^127, 0*Z(193) ], [ 0*Z(193), Z(193)^66 ]], [[ Z(193)^0, Z(193)^0 ], [ 0*Z(193), Z(193)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(193), 2, 2) G = MatrixGroup([MS([[176, 0], [0, 170]]), MS([[1, 1], [0, 1]])])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_{193}$ $\,\rtimes\,$ $C_{192}$ $(C_{193}:C_{64})$ $\,\rtimes\,$ $C_3$ $(C_{193}:C_3)$ $\,\rtimes\,$ $C_{64}$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $D_{193}$ . $C_{96}$ $(C_{193}:C_{96})$ . $C_2$ $(C_{193}:C_{48})$ . $C_4$ $(C_{193}:C_{32})$ . $C_6$ all 10
Aut. group: $\Aut(D_{193})$ $\Aut(C_{193}:C_3)$ $\Aut(C_{193}:C_4)$ $\Aut(C_{193}:C_6)$ all 13

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{192} \simeq C_{64} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 2524 subgroups in 28 conjugacy classes, 15 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $F_{193}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{193}$ $G/G' \simeq$ $C_{192}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $F_{193}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{193}$ $G/\operatorname{Fit} \simeq$ $C_{192}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $F_{193}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{193}$ $G/\operatorname{soc} \simeq$ $C_{192}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_{64}$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
193-Sylow subgroup: $P_{ 193 } \simeq$ $C_{193}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $F_{193}$ $\rhd$ $C_{193}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $F_{193}$ $\rhd$ $C_{193}:C_{96}$ $\rhd$ $C_{193}:C_{48}$ $\rhd$ $C_{193}:C_{24}$ $\rhd$ $C_{193}:C_{12}$ $\rhd$ $C_{193}:C_6$ $\rhd$ $C_{193}:C_3$ $\rhd$ $C_{193}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $F_{193}$ $\rhd$ $C_{193}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $193 \times 193$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

1A 2A 3A 4A 6A 8A 12A 16A 24A 32A 48A 64A 96A 192A 193A
Size 1 193 386 386 386 772 772 1544 1544 3088 3088 6176 6176 12352 192
2 P 1A 1A 3A 2A 3A 4A 6A 8A 12A 16A 24A 32A 48A 96A 193A
3 P 1A 2A 1A 4A 2A 8A 4A 16A 8A 32A 16A 64A 32A 64A 193A
193 P 1A 2A 3A 4A 6A 8A 12A 16A 24A 32A 48A 64A 96A 192A 1A
37056.a.1a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37056.a.1b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37056.a.1c 2 2 1 2 1 2 1 2 1 2 1 2 1 1 2
37056.a.1d 2 2 2 2 2 2 2 2 2 2 2 0 2 0 2
37056.a.1e 2 2 1 2 1 2 1 2 1 2 1 2 1 1 2
37056.a.1f 4 4 4 4 4 4 4 4 4 0 4 0 0 0 4
37056.a.1g 4 4 2 4 2 4 2 4 2 4 2 0 2 0 4
37056.a.1h 8 8 8 8 8 8 8 0 8 0 0 0 0 0 8
37056.a.1i 8 8 4 8 4 8 4 8 4 0 4 0 0 0 8
37056.a.1j 16 16 16 16 16 0 16 0 0 0 0 0 0 0 16
37056.a.1k 16 16 8 16 8 16 8 0 8 0 0 0 0 0 16
37056.a.1l 32 32 32 0 32 0 0 0 0 0 0 0 0 0 32
37056.a.1m 32 32 16 32 16 0 16 0 0 0 0 0 0 0 32
37056.a.1n 64 64 32 0 32 0 0 0 0 0 0 0 0 0 64
37056.a.192a 192 0 0 0 0 0 0 0 0 0 0 0 0 0 1