/* Group 37056.a downloaded from the LMFDB on 12 September 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPC := PCGroup([8, -2, -2, -2, -2, -2, -2, -3, -193, 16, 41, 66, 91, 116, 141, 466951, 571407, 482327, 211999, 99879, 41903, 20791]); a,b := Explode([GPC.1, GPC.8]); AssignNames(~GPC, ["a", "a2", "a4", "a8", "a16", "a32", "a64", "b"]); GPerm := PermutationGroup< 193 | (2,4,10,28,68,97,122,66,54,121,164,189,176,145,126,128,86,130,112,132,60,24,21,53,119,108,183,120,167,144,172,94,40,15,5,13,34,84,165,133,143,109,142,147,160,191,178,100,177,117,181,104,180,186,111,141,137,173,93,151,72,150,192,174,95,125,56,22,12,33,81,48,63,136,175,187,129,59,114,51,99,152,77,38,14,37,61,64,46,105,50,113,118,58,23,8,3,7,19,49,110,91,80,39,32,79,159,182,149,184,106,103,135,101,69,85,43,16,11,31,76,124,153,78,158,185,155,139,65,26,9,25,62,134,161,98,89,123,90,170,171,169,190,131,154,83,163,127,188,146,70,92,87,168,140,156,115,166,193,162,138,107,47,18,20,52,116,55,36,88,157,179,102,44,73,29,71,148,96,41,27,67,42,35,57,75,30,74,82,45,17,6), (1,2,5,14,12,4,11,32,80,36,13,35,87,169,90,37,89,94,164,83,33,82,108,47,30,10,29,72,102,78,31,77,157,187,125,79,160,97,41,15,39,92,172,119,151,88,68,144,167,86,34,85,130,59,23,57,126,84,166,188,168,100,43,99,176,190,184,112,49,111,170,148,114,113,133,61,24,8,22,55,123,154,75,153,95,40,93,128,58,127,189,186,165,116,174,163,192,193,181,162,81,161,146,182,104,45,103,140,65,138,183,105,177,109,48,18,6,16,42,98,74,73,152,147,70,28,69,145,178,149,71,60,131,173,180,150,134,106,46,17,44,101,132,62,135,158,185,110,136,156,76,155,141,66,26,38,91,171,121,107,179,175,96,53,120,129,115,51,19,50,56,124,118,52,117,159,139,143,67,142,191,137,64,25,63,122,54,21,7,20,27,9,3) >; GLFp := MatrixGroup< 2, GF(193) | [[176, 0, 0, 170], [1, 1, 0, 1]] >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_37056_a := rec< RF | Agroup := true, Zgroup := true, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := true, monomial := true, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := true>; /* Character Table */ G:= GPC; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 193, a^96*b^12>,< 3, 193, a^64*b^130>,< 3, 193, a^128*b^81>,< 4, 193, a^144*b^106>,< 4, 193, a^48*b^99>,< 6, 193, a^32*b^124>,< 6, 193, a^160*b^75>,< 8, 193, a^168*b^71>,< 8, 193, a^24*b^60>,< 8, 193, a^120*b^145>,< 8, 193, a^72*b^134>,< 12, 193, a^112*b^14>,< 12, 193, a^80*b^107>,< 12, 193, a^176*b^98>,< 12, 193, a^16*b^191>,< 16, 193, a^84*b^37>,< 16, 193, a^108*b^113>,< 16, 193, a^60*b^24>,< 16, 193, a^132*b^8>,< 16, 193, a^36*b^4>,< 16, 193, a^156*b^181>,< 16, 193, a^12*b^92>,< 16, 193, a^180*b^168>,< 24, 193, a^56*b^102>,< 24, 193, a^136*b^127>,< 24, 193, a^88*b^48>,< 24, 193, a^104*b^62>,< 24, 193, a^8*b^143>,< 24, 193, a^184*b^157>,< 24, 193, a^40*b^78>,< 24, 193, a^152*b^103>,< 32, 193, a^42*b^140>,< 32, 193, a^150*b^61>,< 32, 193, a^126*b^150>,< 32, 193, a^66*b^151>,< 32, 193, a^18*b^34>,< 32, 193, a^174*b^90>,< 32, 193, a^102*b^183>,< 32, 193, a^90*b^52>,< 32, 193, a^186*b^153>,< 32, 193, a^6*b^22>,< 32, 193, a^78*b^115>,< 32, 193, a^114*b^171>,< 32, 193, a^162*b^54>,< 32, 193, a^30*b^55>,< 32, 193, a^54*b^144>,< 32, 193, a^138*b^65>,< 48, 193, a^28*b^185>,< 48, 193, a^164*b^31>,< 48, 193, a^140*b^89>,< 48, 193, a^52*b^132>,< 48, 193, a^4*b^29>,< 48, 193, a^188*b^167>,< 48, 193, a^116*b^104>,< 48, 193, a^76*b^30>,< 48, 193, a^172*b^175>,< 48, 193, a^20*b^101>,< 48, 193, a^92*b^38>,< 48, 193, a^100*b^176>,< 48, 193, a^148*b^73>,< 48, 193, a^44*b^116>,< 48, 193, a^68*b^174>,< 48, 193, a^124*b^20>,< 64, 193, a^117*b^63>,< 64, 193, a^75*b^159>,< 64, 193, a^159*b^84>,< 64, 193, a^33*b^51>,< 64, 193, a^9*b>,< 64, 193, a^183*b^76>,< 64, 193, a^51*b^182>,< 64, 193, a^141*b^72>,< 64, 193, a^93*b^64>,< 64, 193, a^99*b^173>,< 64, 193, a^135*b^126>,< 64, 193, a^57*b^180>,< 64, 193, a^177*b^28>,< 64, 193, a^15*b^148>,< 64, 193, a^27*b^158>,< 64, 193, a^165*b^184>,< 64, 193, a^69*b^21>,< 64, 193, a^123*b^47>,< 64, 193, a^111*b^57>,< 64, 193, a^81*b^177>,< 64, 193, a^153*b^25>,< 64, 193, a^39*b^79>,< 64, 193, a^3*b^32>,< 64, 193, a^189*b^141>,< 64, 193, a^45*b^133>,< 64, 193, a^147*b^23>,< 64, 193, a^87*b^129>,< 64, 193, a^105*b^11>,< 64, 193, a^129*b^154>,< 64, 193, a^63*b^121>,< 64, 193, a^171*b^46>,< 64, 193, a^21*b^142>,< 96, 193, a^14*b^91>,< 96, 193, a^178*b^70>,< 96, 193, a^70*b^190>,< 96, 193, a^122*b^2>,< 96, 193, a^98*b^178>,< 96, 193, a^94*b^87>,< 96, 193, a^154*b^149>,< 96, 193, a^38*b^13>,< 96, 193, a^182*b^18>,< 96, 193, a^10*b^9>,< 96, 193, a^46*b^7>,< 96, 193, a^146*b^42>,< 96, 193, a^74*b^137>,< 96, 193, a^118*b^49>,< 96, 193, a^130*b^33>,< 96, 193, a^62*b^136>,< 96, 193, a^158*b^69>,< 96, 193, a^34*b^172>,< 96, 193, a^22*b^156>,< 96, 193, a^170*b^68>,< 96, 193, a^50*b^163>,< 96, 193, a^142*b^5>,< 96, 193, a^106*b^3>,< 96, 193, a^86*b^187>,< 96, 193, a^134*b^192>,< 96, 193, a^58*b^56>,< 96, 193, a^190*b^118>,< 96, 193, a^2*b^27>,< 96, 193, a^26*b^10>,< 96, 193, a^166*b^15>,< 96, 193, a^82*b^135>,< 96, 193, a^110*b^114>,< 192, 193, a^103*b^170>,< 192, 193, a^89*b^58>,< 192, 193, a^131*b^67>,< 192, 193, a^61*b^111>,< 192, 193, a^145*b^139>,< 192, 193, a^47*b^44>,< 192, 193, a^173*b^59>,< 192, 193, a^19*b^105>,< 192, 193, a^187*b^188>,< 192, 193, a^5*b^108>,< 192, 193, a^23*b^109>,< 192, 193, a^169*b^160>,< 192, 193, a^37*b^123>,< 192, 193, a^155*b^36>,< 192, 193, a^65*b^86>,< 192, 193, a^127*b^74>,< 192, 193, a^79*b^95>,< 192, 193, a^113*b^117>,< 192, 193, a^107*b^85>,< 192, 193, a^85*b^26>,< 192, 193, a^121*b^77>,< 192, 193, a^71*b^50>,< 192, 193, a^149*b^43>,< 192, 193, a^43*b^80>,< 192, 193, a^163*b^93>,< 192, 193, a^29*b^53>,< 192, 193, a^191*b^16>,< 192, 193, a*b^164>,< 192, 193, a^13*b^186>,< 192, 193, a^179*b^122>,< 192, 193, a^41*b^40>,< 192, 193, a^151*b^166>,< 192, 193, a^55*b^39>,< 192, 193, a^137*b^165>,< 192, 193, a^83*b^83>,< 192, 193, a^109*b^19>,< 192, 193, a^97*b^41>,< 192, 193, a^95*b^189>,< 192, 193, a^125*b^152>,< 192, 193, a^67*b^112>,< 192, 193, a^139*b^125>,< 192, 193, a^53*b^162>,< 192, 193, a^167*b^155>,< 192, 193, a^25*b^128>,< 192, 193, a^181*b^179>,< 192, 193, a^11*b^120>,< 192, 193, a^17*b^88>,< 192, 193, a^175*b^110>,< 192, 193, a^31*b^131>,< 192, 193, a^161*b^119>,< 192, 193, a^59*b^169>,< 192, 193, a^133*b^82>,< 192, 193, a^73*b^45>,< 192, 193, a^119*b^96>,< 192, 193, a^101*b^97>,< 192, 193, a^91*b^17>,< 192, 193, a^115*b^100>,< 192, 193, a^77*b^146>,< 192, 193, a^143*b^161>,< 192, 193, a^49*b^66>,< 192, 193, a^157*b^94>,< 192, 193, a^35*b^138>,< 192, 193, a^185*b^147>,< 192, 193, a^7*b^35>,< 193, 192, b>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(4: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1^-1,K.1,1,1,K.1,K.1^-1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,1,1,1,1,1,1,1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,K.1,K.1^-1,1,1,K.1^-1,K.1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,1,1,1,1,1,1,1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1,K.1,K.1^-1,K.1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1^-1,K.1,K.1^-1,K.1,K.1,K.1,K.1^-1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1,K.1^-1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1^3,K.1,K.1,-1*K.1^3,K.1^3,K.1,K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1,K.1,K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,K.1,K.1^3,-1*K.1,K.1,K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1,K.1^3,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,-1*K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1^3,K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,K.1,K.1,K.1^3,K.1,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,-1*K.1,K.1,K.1^3,K.1^3,-1*K.1^3,K.1,K.1^3,K.1,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^3,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(8: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,-1*K.1,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1,-1*K.1,-1*K.1^3,-1*K.1^3,K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1,-1*K.1^3,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,K.1,-1*K.1,K.1^3,K.1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1,K.1,-1*K.1,K.1,K.1,K.1,K.1,K.1^3,K.1^3,-1*K.1,K.1,K.1^3,K.1,K.1,K.1,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,K.1,K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1*K.1^2,K.1^4,1,1,K.1^4,-1*K.1^2,1,1,1,1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,K.1,K.1^5,K.1,K.1^5,K.1^5,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1^5,-1*K.1,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^5,K.1,K.1,K.1^5,K.1,K.1,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^5,K.1,K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1,K.1^5,K.1,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^5,K.1,-1*K.1,K.1^5,K.1,-1*K.1^5,K.1,-1*K.1,K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,K.1^4,-1*K.1^2,1,1,-1*K.1^2,K.1^4,1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,1,1,1,1,1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1,K.1,K.1^5,K.1,K.1^5,-1*K.1,-1*K.1,K.1^5,K.1,-1*K.1^5,K.1,K.1,K.1^5,K.1,K.1^5,K.1^5,K.1^5,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,K.1,-1*K.1^5,K.1,K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1^5,K.1,K.1^5,K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1,K.1,K.1^5,-1*K.1,K.1,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,K.1,-1*K.1^5,K.1^5,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,-1*K.1^2,K.1^4,1,1,K.1^4,-1*K.1^2,1,1,1,1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,1,1,1,1,1,1,1,1,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1^5,K.1^5,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1^5,K.1,K.1^5,-1*K.1,K.1^5,K.1^5,K.1,K.1^5,K.1,K.1,K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1^5,-1*K.1,K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,K.1,K.1^5,K.1,K.1,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^5,K.1^5,K.1,-1*K.1^5,K.1^5,-1*K.1,K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1,K.1,-1*K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(12: Sparse := true); S := [ K |1,1,K.1^4,-1*K.1^2,1,1,-1*K.1^2,K.1^4,1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,1,1,1,1,1,1,1,1,K.1^4,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1^4,K.1^4,-1*K.1^2,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^2,K.1^4,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,K.1^3,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,K.1^2,K.1^2,K.1^2,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,-1*K.1^4,K.1^2,-1*K.1^4,K.1^2,K.1^5,K.1,K.1^5,K.1,K.1,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,K.1,K.1^5,K.1^5,K.1,K.1^5,K.1^5,-1*K.1,K.1^5,-1*K.1,-1*K.1,K.1^5,K.1,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^5,K.1,K.1^5,K.1,-1*K.1,-1*K.1,-1*K.1^5,K.1,-1*K.1,K.1^5,-1*K.1^5,K.1,K.1^5,-1*K.1,K.1^5,-1*K.1^5,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^5,-1*K.1^5,-1*K.1^3,K.1,K.1^7,-1*K.1^3,-1*K.1^5,K.1,K.1^7,-1*K.1^7,-1*K.1^7,K.1^5,K.1^5,K.1^3,-1*K.1,K.1^3,-1*K.1,-1*K.1,K.1^7,-1*K.1^5,K.1^3,-1*K.1^3,K.1^5,-1*K.1^7,K.1,K.1^7,-1*K.1,-1*K.1^5,K.1^3,-1*K.1^7,K.1,-1*K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,K.1,K.1,-1*K.1^5,K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,-1*K.1,-1*K.1^7,K.1^3,K.1^7,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1^3,-1*K.1,-1*K.1,K.1^7,-1*K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^3,K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1^5,K.1^7,-1*K.1^5,K.1,K.1,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1^7,K.1^5,K.1,K.1^5,-1*K.1^7,K.1^7,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1,K.1^5,K.1^7,-1*K.1^7,K.1^3,K.1^5,-1*K.1^7,K.1^5,-1*K.1^3,-1*K.1^5,-1*K.1,K.1^7,K.1^5,K.1^3,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^3,K.1^3,K.1^5,-1*K.1^7,-1*K.1,K.1^5,K.1^3,-1*K.1^7,-1*K.1,K.1,K.1,-1*K.1^3,-1*K.1^3,-1*K.1^5,K.1^7,-1*K.1^5,K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1^5,K.1^5,-1*K.1^3,K.1,-1*K.1^7,-1*K.1,K.1^7,K.1^3,-1*K.1^5,K.1,-1*K.1^7,K.1^5,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^6,-1*K.1^7,-1*K.1^7,K.1^3,-1*K.1^7,K.1^3,K.1^7,-1*K.1^3,-1*K.1^7,K.1^7,K.1,-1*K.1^5,-1*K.1,K.1^5,K.1^5,-1*K.1^5,K.1^5,K.1^7,K.1^7,-1*K.1,K.1^5,K.1^7,-1*K.1^5,K.1^5,K.1^5,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1^3,-1*K.1,K.1^3,-1*K.1^7,-1*K.1^7,K.1^3,K.1^3,-1*K.1^3,K.1,K.1^3,K.1^5,K.1,-1*K.1^3,-1*K.1^7,-1*K.1^3,K.1,-1*K.1,-1*K.1^5,K.1,K.1,K.1^7,K.1^7,-1*K.1^3,-1*K.1,K.1,-1*K.1^5,-1*K.1^3,K.1,-1*K.1^3,K.1^5,K.1^3,K.1^7,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^5,K.1^5,K.1^3,-1*K.1,-1*K.1^7,K.1^3,K.1^5,-1*K.1,-1*K.1^7,K.1^7,K.1^7,-1*K.1^5,-1*K.1^5,-1*K.1^3,K.1,-1*K.1^3,K.1,K.1,-1*K.1^7,K.1^5,-1*K.1^3,K.1^3,-1*K.1^5,K.1^7,-1*K.1,-1*K.1^7,K.1,K.1^5,-1*K.1^3,K.1^7,-1*K.1,K.1^3,-1*K.1^2,-1*K.1^2,K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1,-1*K.1,K.1^5,-1*K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,K.1,K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,K.1^3,-1*K.1^3,K.1^3,K.1,K.1,-1*K.1^7,K.1^3,K.1,-1*K.1^3,K.1^3,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^5,-1*K.1^7,K.1^5,-1*K.1,-1*K.1,K.1^5,K.1^5,-1*K.1^5,K.1^7,K.1^5,K.1^3,K.1^7,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^7,-1*K.1^7,-1*K.1^3,K.1^7,K.1^7,K.1,K.1,-1*K.1^5,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1^5,K.1^7,-1*K.1^5,K.1^3,K.1^5,K.1,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^3,-1*K.1^3,-1*K.1^5,K.1^7,K.1,-1*K.1^5,-1*K.1^3,K.1^7,K.1,-1*K.1,-1*K.1,K.1^3,K.1^3,K.1^5,-1*K.1^7,K.1^5,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1^5,-1*K.1^5,K.1^3,-1*K.1,K.1^7,K.1,-1*K.1^7,-1*K.1^3,K.1^5,-1*K.1,K.1^7,-1*K.1^5,K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^2,-1*K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^6,K.1^6,K.1^6,K.1^7,K.1^7,-1*K.1^3,K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,K.1^7,-1*K.1^7,-1*K.1,K.1^5,K.1,-1*K.1^5,-1*K.1^5,K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^5,-1*K.1^7,K.1^5,-1*K.1^5,-1*K.1^5,K.1^5,K.1,K.1,K.1^5,-1*K.1^3,K.1,-1*K.1^3,K.1^7,K.1^7,-1*K.1^3,-1*K.1^3,K.1^3,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1,K.1^3,K.1^7,K.1^3,-1*K.1,K.1,K.1^5,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^3,K.1,-1*K.1,K.1^5,K.1^3,-1*K.1,K.1^3,-1*K.1^5,-1*K.1^3,-1*K.1^7,K.1,K.1^3,K.1^5,K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1,K.1,K.1^7,K.1^5,K.1^3,K.1^7,K.1,K.1^5,K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^5,K.1^3,K.1,-1*K.1^7,K.1^7,-1*K.1,-1*K.1^3,K.1^5,K.1^3,-1*K.1^5,K.1,-1*K.1^7,-1*K.1^3,K.1^5,K.1^7,K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,K.1^2,K.1^2,K.1^5,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^7,K.1^3,K.1^7,K.1^7,-1*K.1^7,K.1^7,-1*K.1^5,-1*K.1^5,K.1^3,K.1^7,-1*K.1^5,-1*K.1^7,K.1^7,K.1^7,-1*K.1^7,K.1^3,K.1^3,-1*K.1^7,K.1,K.1^3,K.1,K.1^5,K.1^5,K.1,K.1,-1*K.1,-1*K.1^3,K.1,K.1^7,-1*K.1^3,-1*K.1,K.1^5,-1*K.1,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1,K.1^7,K.1,-1*K.1^5,K.1^3,-1*K.1,-1*K.1^7,K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^7,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^5,K.1^5,K.1^5,K.1^7,K.1^7,K.1,K.1^3,K.1,K.1^3,K.1^3,-1*K.1^5,-1*K.1^7,K.1,-1*K.1,K.1^7,K.1^5,-1*K.1^3,-1*K.1^5,K.1^3,-1*K.1^7,K.1,K.1^5,-1*K.1^3,-1*K.1,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,K.1^7,-1*K.1^3,K.1^3,K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1,-1*K.1,K.1^3,K.1^3,-1*K.1^5,-1*K.1,K.1^3,K.1,-1*K.1,-1*K.1,K.1,-1*K.1^5,-1*K.1^5,K.1,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^7,K.1^5,-1*K.1^7,-1*K.1,K.1^5,K.1^7,-1*K.1^3,K.1^7,K.1^5,-1*K.1^5,K.1,K.1^5,K.1^5,K.1^3,K.1^3,K.1^7,-1*K.1^5,K.1^5,K.1,K.1^7,K.1^5,K.1^7,-1*K.1,-1*K.1^7,K.1^3,-1*K.1^5,K.1^7,K.1,-1*K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,K.1^6,-1*K.1^6,K.1^2,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1^7,-1*K.1,-1*K.1^5,-1*K.1^3,K.1^3,K.1^3,K.1,K.1,K.1^7,K.1^5,K.1^7,K.1^5,K.1^5,-1*K.1^3,-1*K.1,K.1^7,-1*K.1^7,K.1,K.1^3,-1*K.1^5,-1*K.1^3,K.1^5,-1*K.1,K.1^7,K.1^3,-1*K.1^5,-1*K.1^7,K.1^2,K.1^2,-1*K.1^2,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^6,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^2,K.1^2,K.1^2,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,K.1,-1*K.1^5,K.1^5,K.1^3,K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^7,K.1^5,K.1^5,-1*K.1^3,-1*K.1^7,K.1^5,K.1^7,-1*K.1^7,-1*K.1^7,K.1^7,-1*K.1^3,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1,K.1,K.1^3,-1*K.1,-1*K.1^7,K.1^3,K.1,-1*K.1^5,K.1,K.1^3,-1*K.1^3,K.1^7,K.1^3,K.1^3,K.1^5,K.1^5,K.1,-1*K.1^3,K.1^3,K.1^7,K.1,K.1^3,K.1,-1*K.1^7,-1*K.1,K.1^5,-1*K.1^3,K.1,K.1^7,-1*K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(16: Sparse := true); S := [ K |1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1^2,-1*K.1^6,-1*K.1^2,K.1^6,K.1^6,-1*K.1^2,K.1^2,-1*K.1^6,K.1^6,-1*K.1^2,-1*K.1^6,K.1^2,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^4,-1*K.1^7,K.1^7,K.1,K.1^3,K.1^5,K.1,K.1^7,K.1^3,K.1^5,-1*K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1,-1*K.1^3,-1*K.1^3,K.1^5,K.1^7,-1*K.1,K.1,-1*K.1^7,-1*K.1^5,K.1^3,K.1^5,-1*K.1^3,K.1^7,-1*K.1,-1*K.1^5,K.1^3,K.1,-1*K.1^6,-1*K.1^6,K.1^6,K.1^2,K.1^2,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^2,K.1^2,-1*K.1^2,K.1^2,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^2,K.1^6,-1*K.1^2,-1*K.1^2,K.1^2,K.1^2,-1*K.1^6,-1*K.1^6,-1*K.1^6,K.1^3,K.1^3,K.1^7,K.1^3,K.1^7,-1*K.1^3,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1^5,-1*K.1,K.1^5,K.1,K.1,-1*K.1,K.1,-1*K.1^3,-1*K.1^3,K.1^5,K.1,-1*K.1^3,-1*K.1,K.1,K.1,-1*K.1,K.1^5,K.1^5,-1*K.1,K.1^7,K.1^5,K.1^7,K.1^3,K.1^3,K.1^7,K.1^7,-1*K.1^7,-1*K.1^5,K.1^7,K.1,-1*K.1^5,-1*K.1^7,K.1^3,-1*K.1^7,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^7,K.1,K.1^7,-1*K.1^3,K.1^5,-1*K.1^7,-1*K.1,K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,-1*K.1^4,K.1^8,1,1,K.1^8,-1*K.1^4,1,1,1,1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^4,K.1^8,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^10,K.1^10,K.1^2,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^7,K.1^7,K.1^11,K.1^7,K.1^11,-1*K.1^7,K.1^5,K.1,-1*K.1,K.1,-1*K.1^5,K.1,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1^5,K.1,K.1^11,K.1,K.1,-1*K.1^5,K.1,K.1^5,K.1^5,-1*K.1^5,-1*K.1^11,K.1^5,K.1^7,K.1^11,K.1^11,K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1,-1*K.1^11,K.1,-1*K.1,-1*K.1^11,-1*K.1^7,K.1^7,K.1^5,-1*K.1,-1*K.1^5,K.1^5,K.1^5,-1*K.1^7,K.1^11,K.1^7,-1*K.1,-1*K.1,-1*K.1^5,K.1^7,-1*K.1,-1*K.1^11,-1*K.1^5,K.1^7,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,K.1^8,-1*K.1^4,1,1,-1*K.1^4,K.1^8,1,1,1,1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^3,K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^2,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^10,K.1^2,-1*K.1^10,K.1^2,K.1^2,K.1^2,K.1^10,K.1^2,K.1^10,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^10,-1*K.1,K.1^5,K.1,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^5,-1*K.1^7,-1*K.1^11,K.1^11,-1*K.1^11,K.1^7,-1*K.1^11,K.1^7,K.1^5,K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^11,K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^7,K.1^7,K.1,-1*K.1^7,-1*K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1,K.1,K.1^11,K.1,-1*K.1^11,K.1^11,K.1,K.1^5,-1*K.1^5,-1*K.1^7,K.1^11,K.1^7,-1*K.1^7,-1*K.1^7,K.1^5,-1*K.1,-1*K.1^5,K.1^11,K.1^11,K.1^7,-1*K.1^5,K.1^11,K.1,K.1^7,-1*K.1^5,-1*K.1,K.1^11,K.1,K.1^7,K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,-1*K.1^4,K.1^8,1,1,K.1^8,-1*K.1^4,1,1,1,1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^4,K.1^8,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^10,K.1^10,K.1^2,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^11,K.1^7,K.1^11,K.1^7,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^11,K.1^7,-1*K.1^5,-1*K.1,K.1,-1*K.1,K.1^5,-1*K.1,K.1^5,K.1^7,K.1^7,-1*K.1^5,-1*K.1,-1*K.1^11,-1*K.1,-1*K.1,K.1^5,-1*K.1,-1*K.1^5,-1*K.1^5,K.1^5,K.1^11,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^7,K.1^11,K.1^11,K.1,K.1^11,-1*K.1,K.1,K.1^11,K.1^7,-1*K.1^7,-1*K.1^5,K.1,K.1^5,-1*K.1^5,-1*K.1^5,K.1^7,-1*K.1^11,-1*K.1^7,K.1,K.1,K.1^5,-1*K.1^7,K.1,K.1^11,K.1^5,-1*K.1^7,-1*K.1^11,K.1,K.1^11,K.1^5,K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,K.1^8,-1*K.1^4,1,1,-1*K.1^4,K.1^8,1,1,1,1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^3,K.1^2,K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^10,K.1^2,-1*K.1^10,K.1^2,K.1^2,K.1^2,K.1^10,K.1^2,K.1^10,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^10,K.1^2,K.1^10,K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1^5,K.1,K.1^5,K.1,-1*K.1^5,K.1^7,K.1^11,-1*K.1^11,K.1^11,-1*K.1^7,K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1^5,K.1^7,K.1^11,K.1,K.1^11,K.1^11,-1*K.1^7,K.1^11,K.1^7,K.1^7,-1*K.1^7,-1*K.1,K.1^7,K.1^5,K.1,K.1,K.1^5,-1*K.1,-1*K.1,-1*K.1^11,-1*K.1,K.1^11,-1*K.1^11,-1*K.1,-1*K.1^5,K.1^5,K.1^7,-1*K.1^11,-1*K.1^7,K.1^7,K.1^7,-1*K.1^5,K.1,K.1^5,-1*K.1^11,-1*K.1^11,-1*K.1^7,K.1^5,-1*K.1^11,-1*K.1,-1*K.1^7,K.1^5,K.1,-1*K.1^11,-1*K.1,-1*K.1^7,-1*K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,-1*K.1^4,K.1^8,1,1,K.1^8,-1*K.1^4,1,1,1,1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^4,K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^3,K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^10,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^2,K.1^10,-1*K.1^2,K.1^10,K.1^10,K.1^10,K.1^2,K.1^10,K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1^2,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1,K.1^5,K.1,K.1^5,-1*K.1,K.1^11,K.1^7,-1*K.1^7,K.1^7,-1*K.1^11,K.1^7,-1*K.1^11,-1*K.1,-1*K.1,K.1^11,K.1^7,K.1^5,K.1^7,K.1^7,-1*K.1^11,K.1^7,K.1^11,K.1^11,-1*K.1^11,-1*K.1^5,K.1^11,K.1,K.1^5,K.1^5,K.1,-1*K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^5,K.1^7,-1*K.1^7,-1*K.1^5,-1*K.1,K.1,K.1^11,-1*K.1^7,-1*K.1^11,K.1^11,K.1^11,-1*K.1,K.1^5,K.1,-1*K.1^7,-1*K.1^7,-1*K.1^11,K.1,-1*K.1^7,-1*K.1^5,-1*K.1^11,K.1,K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^11,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,K.1^8,-1*K.1^4,1,1,-1*K.1^4,K.1^8,1,1,1,1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1^2,K.1^2,K.1^10,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^10,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^7,K.1^11,K.1^7,K.1^11,-1*K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^7,K.1^11,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^5,K.1,-1*K.1^5,K.1,K.1^11,K.1^11,-1*K.1,-1*K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^5,K.1,-1*K.1^5,-1*K.1,-1*K.1,K.1,K.1^7,-1*K.1,-1*K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^11,K.1^7,K.1^7,K.1^5,K.1^7,-1*K.1^5,K.1^5,K.1^7,K.1^11,-1*K.1^11,-1*K.1,K.1^5,K.1,-1*K.1,-1*K.1,K.1^11,-1*K.1^7,-1*K.1^11,K.1^5,K.1^5,K.1,-1*K.1^11,K.1^5,K.1^7,K.1,-1*K.1^11,-1*K.1^7,K.1^5,K.1^7,K.1,K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,-1*K.1^4,K.1^8,1,1,K.1^8,-1*K.1^4,1,1,1,1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1,-1,-1,-1,-1,-1,-1,-1,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1*K.1^4,K.1^8,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^4,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,K.1^3,K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^3,K.1^10,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^2,K.1^10,-1*K.1^2,K.1^10,K.1^10,K.1^10,K.1^2,K.1^10,K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1^2,-1*K.1^5,K.1,K.1^5,K.1,-1*K.1,-1*K.1^5,-1*K.1,-1*K.1^5,K.1,-1*K.1^11,-1*K.1^7,K.1^7,-1*K.1^7,K.1^11,-1*K.1^7,K.1^11,K.1,K.1,-1*K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^11,K.1^11,K.1^5,-1*K.1^11,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^5,K.1^5,K.1^7,K.1^5,-1*K.1^7,K.1^7,K.1^5,K.1,-1*K.1,-1*K.1^11,K.1^7,K.1^11,-1*K.1^11,-1*K.1^11,K.1,-1*K.1^5,-1*K.1,K.1^7,K.1^7,K.1^11,-1*K.1,K.1^7,K.1^5,K.1^11,-1*K.1,-1*K.1^5,K.1^7,K.1^5,K.1^11,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(24: Sparse := true); S := [ K |1,1,K.1^8,-1*K.1^4,1,1,-1*K.1^4,K.1^8,1,1,1,1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,-1,-1,-1,-1,-1,-1,-1,-1,K.1^8,-1*K.1^4,-1*K.1^4,K.1^8,K.1^8,-1*K.1^4,K.1^8,-1*K.1^4,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,-1*K.1^6,K.1^6,K.1^6,-1*K.1^6,K.1^6,-1*K.1^6,K.1^4,K.1^4,K.1^4,-1*K.1^8,K.1^4,K.1^4,K.1^4,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,-1*K.1^8,-1*K.1^8,-1*K.1^8,K.1^4,-1*K.1^8,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^9,K.1^3,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^9,K.1^3,-1*K.1^9,-1*K.1^9,K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,K.1^3,-1*K.1^9,K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1^2,K.1^2,K.1^10,K.1^2,K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^10,K.1^2,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^11,K.1^11,K.1^7,K.1^11,K.1^7,-1*K.1^11,K.1,K.1^5,-1*K.1^5,K.1^5,-1*K.1,K.1^5,-1*K.1,-1*K.1^11,-1*K.1^11,K.1,K.1^5,K.1^7,K.1^5,K.1^5,-1*K.1,K.1^5,K.1,K.1,-1*K.1,-1*K.1^7,K.1,K.1^11,K.1^7,K.1^7,K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^5,-1*K.1^7,K.1^5,-1*K.1^5,-1*K.1^7,-1*K.1^11,K.1^11,K.1,-1*K.1^5,-1*K.1,K.1,K.1,-1*K.1^11,K.1^7,K.1^11,-1*K.1^5,-1*K.1^5,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^7,-1*K.1,K.1^11,K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1,-1*K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^14,-1*K.1^2,-1*K.1^6,K.1^10,-1*K.1^14,K.1^2,K.1^6,-1*K.1^10,-1*K.1^10,K.1^6,-1*K.1^14,K.1^2,K.1^10,-1*K.1^6,-1*K.1^2,K.1^14,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1,K.1^9,K.1^15,K.1^13,K.1^11,K.1^15,K.1^9,K.1^13,K.1^11,K.1^3,K.1^3,K.1,K.1,K.1^7,K.1^5,K.1^7,K.1^5,-1*K.1^5,-1*K.1^11,-1*K.1^9,-1*K.1^7,-1*K.1^15,-1*K.1,-1*K.1^3,-1*K.1^13,-1*K.1^11,-1*K.1^5,-1*K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^13,-1*K.1^15,K.1^2,K.1^2,K.1^10,K.1^14,-1*K.1^14,K.1^6,-1*K.1^6,K.1^14,-1*K.1^14,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^2,K.1^10,K.1^6,K.1^10,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^6,K.1^6,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^2,-1*K.1^13,K.1^13,-1*K.1^9,-1*K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1,K.1^13,K.1^5,-1*K.1^3,K.1^7,-1*K.1^11,K.1^15,K.1^15,K.1^7,-1*K.1^15,-1*K.1^5,K.1^5,K.1^11,K.1^15,K.1^5,-1*K.1^7,-1*K.1^15,K.1^15,-1*K.1^7,-1*K.1^11,-1*K.1^11,K.1^7,-1*K.1^9,K.1^11,-1*K.1^9,K.1^13,-1*K.1^13,K.1^9,K.1^9,-1*K.1,K.1^3,K.1^9,-1*K.1^15,-1*K.1^3,K.1,-1*K.1^13,K.1,-1*K.1^3,K.1^11,K.1^7,K.1^3,K.1^3,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^7,K.1,-1*K.1^3,-1*K.1,-1*K.1^15,K.1^9,K.1^5,K.1^11,K.1,-1*K.1^7,K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,-1*K.1^4,K.1^12,-1*K.1^12,K.1^4,-1*K.1^12,K.1^4,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^2,K.1^14,K.1^10,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^10,K.1^6,K.1^6,-1*K.1^10,K.1^2,-1*K.1^14,-1*K.1^6,K.1^10,K.1^14,-1*K.1^2,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^15,-1*K.1^7,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1,-1*K.1^7,-1*K.1^3,-1*K.1^5,-1*K.1^13,-1*K.1^13,-1*K.1^15,-1*K.1^15,-1*K.1^9,-1*K.1^11,-1*K.1^9,-1*K.1^11,K.1^11,K.1^5,K.1^7,K.1^9,K.1,K.1^15,K.1^13,K.1^3,K.1^5,K.1^11,K.1^7,K.1^9,K.1^13,K.1^3,K.1,-1*K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^10,-1*K.1^2,K.1^10,K.1^2,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^14,K.1^6,K.1^14,K.1^6,K.1^10,K.1^6,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,K.1^14,K.1^3,-1*K.1^3,K.1^7,K.1^3,K.1^7,K.1^11,K.1^15,-1*K.1^3,-1*K.1^11,K.1^13,-1*K.1^9,K.1^5,-1*K.1,-1*K.1,-1*K.1^9,K.1,K.1^11,-1*K.1^11,-1*K.1^5,-1*K.1,-1*K.1^11,K.1^9,K.1,-1*K.1,K.1^9,K.1^5,K.1^5,-1*K.1^9,K.1^7,-1*K.1^5,K.1^7,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^7,K.1^15,-1*K.1^13,-1*K.1^7,K.1,K.1^13,-1*K.1^15,K.1^3,-1*K.1^15,K.1^13,-1*K.1^5,-1*K.1^9,-1*K.1^13,-1*K.1^13,K.1^11,K.1^11,K.1^15,K.1^5,-1*K.1^13,K.1^9,-1*K.1^15,K.1^13,K.1^15,K.1,-1*K.1^7,-1*K.1^11,-1*K.1^5,-1*K.1^15,K.1^9,-1*K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^14,-1*K.1^2,-1*K.1^6,K.1^10,-1*K.1^14,K.1^2,K.1^6,-1*K.1^10,-1*K.1^10,K.1^6,-1*K.1^14,K.1^2,K.1^10,-1*K.1^6,-1*K.1^2,K.1^14,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1,-1*K.1^9,-1*K.1^15,-1*K.1^13,-1*K.1^11,-1*K.1^15,-1*K.1^9,-1*K.1^13,-1*K.1^11,-1*K.1^3,-1*K.1^3,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^5,-1*K.1^7,-1*K.1^5,K.1^5,K.1^11,K.1^9,K.1^7,K.1^15,K.1,K.1^3,K.1^13,K.1^11,K.1^5,K.1^9,K.1^7,K.1^3,K.1^13,K.1^15,K.1^2,K.1^2,K.1^10,K.1^14,-1*K.1^14,K.1^6,-1*K.1^6,K.1^14,-1*K.1^14,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^14,K.1^10,-1*K.1^2,K.1^10,K.1^6,K.1^10,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^6,K.1^6,K.1^14,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^2,K.1^13,-1*K.1^13,K.1^9,K.1^13,K.1^9,K.1^5,K.1,-1*K.1^13,-1*K.1^5,K.1^3,-1*K.1^7,K.1^11,-1*K.1^15,-1*K.1^15,-1*K.1^7,K.1^15,K.1^5,-1*K.1^5,-1*K.1^11,-1*K.1^15,-1*K.1^5,K.1^7,K.1^15,-1*K.1^15,K.1^7,K.1^11,K.1^11,-1*K.1^7,K.1^9,-1*K.1^11,K.1^9,-1*K.1^13,K.1^13,-1*K.1^9,-1*K.1^9,K.1,-1*K.1^3,-1*K.1^9,K.1^15,K.1^3,-1*K.1,K.1^13,-1*K.1,K.1^3,-1*K.1^11,-1*K.1^7,-1*K.1^3,-1*K.1^3,K.1^5,K.1^5,K.1,K.1^11,-1*K.1^3,K.1^7,-1*K.1,K.1^3,K.1,K.1^15,-1*K.1^9,-1*K.1^5,-1*K.1^11,-1*K.1,K.1^7,-1*K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,-1*K.1^4,K.1^12,-1*K.1^12,K.1^4,-1*K.1^12,K.1^4,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^2,K.1^14,K.1^10,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^10,K.1^6,K.1^6,-1*K.1^10,K.1^2,-1*K.1^14,-1*K.1^6,K.1^10,K.1^14,-1*K.1^2,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^12,-1*K.1^15,K.1^7,K.1,K.1^3,K.1^5,K.1,K.1^7,K.1^3,K.1^5,K.1^13,K.1^13,K.1^15,K.1^15,K.1^9,K.1^11,K.1^9,K.1^11,-1*K.1^11,-1*K.1^5,-1*K.1^7,-1*K.1^9,-1*K.1,-1*K.1^15,-1*K.1^13,-1*K.1^3,-1*K.1^5,-1*K.1^11,-1*K.1^7,-1*K.1^9,-1*K.1^13,-1*K.1^3,-1*K.1,-1*K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^2,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,K.1^2,K.1^10,-1*K.1^2,K.1^10,K.1^2,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^6,K.1^6,-1*K.1^14,K.1^6,K.1^14,K.1^6,K.1^10,K.1^6,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^14,K.1^14,K.1^14,-1*K.1^3,K.1^3,-1*K.1^7,-1*K.1^3,-1*K.1^7,-1*K.1^11,-1*K.1^15,K.1^3,K.1^11,-1*K.1^13,K.1^9,-1*K.1^5,K.1,K.1,K.1^9,-1*K.1,-1*K.1^11,K.1^11,K.1^5,K.1,K.1^11,-1*K.1^9,-1*K.1,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^5,K.1^9,-1*K.1^7,K.1^5,-1*K.1^7,K.1^3,-1*K.1^3,K.1^7,K.1^7,-1*K.1^15,K.1^13,K.1^7,-1*K.1,-1*K.1^13,K.1^15,-1*K.1^3,K.1^15,-1*K.1^13,K.1^5,K.1^9,K.1^13,K.1^13,-1*K.1^11,-1*K.1^11,-1*K.1^15,-1*K.1^5,K.1^13,-1*K.1^9,K.1^15,-1*K.1^13,-1*K.1^15,-1*K.1,K.1^7,K.1^11,K.1^5,K.1^15,-1*K.1^9,K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^14,K.1^2,K.1^6,-1*K.1^10,K.1^14,-1*K.1^2,-1*K.1^6,K.1^10,K.1^10,-1*K.1^6,K.1^14,-1*K.1^2,-1*K.1^10,K.1^6,K.1^2,-1*K.1^14,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,K.1^9,K.1,-1*K.1^7,K.1^5,-1*K.1^3,-1*K.1^7,K.1,K.1^5,-1*K.1^3,K.1^11,K.1^11,-1*K.1^9,-1*K.1^9,K.1^15,-1*K.1^13,K.1^15,-1*K.1^13,K.1^13,K.1^3,-1*K.1,-1*K.1^15,K.1^7,K.1^9,-1*K.1^11,-1*K.1^5,K.1^3,K.1^13,-1*K.1,-1*K.1^15,-1*K.1^11,-1*K.1^5,K.1^7,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^14,K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,K.1^14,K.1^6,-1*K.1^14,K.1^6,K.1^14,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^10,-1*K.1^2,K.1^10,K.1^2,K.1^10,K.1^6,K.1^10,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^2,-1*K.1^5,K.1^5,-1*K.1,-1*K.1^5,-1*K.1,K.1^13,K.1^9,K.1^5,-1*K.1^13,-1*K.1^11,K.1^15,K.1^3,-1*K.1^7,-1*K.1^7,K.1^15,K.1^7,K.1^13,-1*K.1^13,-1*K.1^3,-1*K.1^7,-1*K.1^13,-1*K.1^15,K.1^7,-1*K.1^7,-1*K.1^15,K.1^3,K.1^3,K.1^15,-1*K.1,-1*K.1^3,-1*K.1,K.1^5,-1*K.1^5,K.1,K.1,K.1^9,K.1^11,K.1,K.1^7,-1*K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^9,-1*K.1^11,-1*K.1^3,K.1^15,K.1^11,K.1^11,K.1^13,K.1^13,K.1^9,K.1^3,K.1^11,-1*K.1^15,-1*K.1^9,-1*K.1^11,K.1^9,K.1^7,K.1,-1*K.1^13,-1*K.1^3,-1*K.1^9,-1*K.1^15,K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,-1*K.1^4,K.1^12,-1*K.1^12,K.1^4,-1*K.1^12,K.1^4,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^2,-1*K.1^14,-1*K.1^10,K.1^6,-1*K.1^2,K.1^14,K.1^10,-1*K.1^6,-1*K.1^6,K.1^10,-1*K.1^2,K.1^14,K.1^6,-1*K.1^10,-1*K.1^14,K.1^2,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^12,-1*K.1^7,-1*K.1^15,K.1^9,-1*K.1^11,K.1^13,K.1^9,-1*K.1^15,-1*K.1^11,K.1^13,-1*K.1^5,-1*K.1^5,K.1^7,K.1^7,-1*K.1,K.1^3,-1*K.1,K.1^3,-1*K.1^3,-1*K.1^13,K.1^15,K.1,-1*K.1^9,-1*K.1^7,K.1^5,K.1^11,-1*K.1^13,-1*K.1^3,K.1^15,K.1,K.1^5,K.1^11,-1*K.1^9,K.1^14,K.1^14,K.1^6,K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^14,K.1^6,K.1^10,K.1^6,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^6,K.1^10,K.1^10,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,K.1^11,-1*K.1^11,K.1^15,K.1^11,K.1^15,-1*K.1^3,-1*K.1^7,-1*K.1^11,K.1^3,K.1^5,-1*K.1,-1*K.1^13,K.1^9,K.1^9,-1*K.1,-1*K.1^9,-1*K.1^3,K.1^3,K.1^13,K.1^9,K.1^3,K.1,-1*K.1^9,K.1^9,K.1,-1*K.1^13,-1*K.1^13,-1*K.1,K.1^15,K.1^13,K.1^15,-1*K.1^11,K.1^11,-1*K.1^15,-1*K.1^15,-1*K.1^7,-1*K.1^5,-1*K.1^15,-1*K.1^9,K.1^5,K.1^7,K.1^11,K.1^7,K.1^5,K.1^13,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^7,-1*K.1^13,-1*K.1^5,K.1,K.1^7,K.1^5,-1*K.1^7,-1*K.1^9,-1*K.1^15,K.1^3,K.1^13,K.1^7,K.1,-1*K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,K.1^12,-1*K.1^4,K.1^4,-1*K.1^12,K.1^4,-1*K.1^12,-1*K.1^4,K.1^12,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^14,K.1^2,K.1^6,-1*K.1^10,K.1^14,-1*K.1^2,-1*K.1^6,K.1^10,K.1^10,-1*K.1^6,K.1^14,-1*K.1^2,-1*K.1^10,K.1^6,K.1^2,-1*K.1^14,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^4,-1*K.1^9,-1*K.1,K.1^7,-1*K.1^5,K.1^3,K.1^7,-1*K.1,-1*K.1^5,K.1^3,-1*K.1^11,-1*K.1^11,K.1^9,K.1^9,-1*K.1^15,K.1^13,-1*K.1^15,K.1^13,-1*K.1^13,-1*K.1^3,K.1,K.1^15,-1*K.1^7,-1*K.1^9,K.1^11,K.1^5,-1*K.1^3,-1*K.1^13,K.1,K.1^15,K.1^11,K.1^5,-1*K.1^7,-1*K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^14,K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,K.1^14,K.1^6,-1*K.1^14,K.1^6,K.1^14,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^6,-1*K.1^10,K.1^10,-1*K.1^2,K.1^10,K.1^2,K.1^10,K.1^6,K.1^10,-1*K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,-1*K.1^2,K.1^2,K.1^2,K.1^5,-1*K.1^5,K.1,K.1^5,K.1,-1*K.1^13,-1*K.1^9,-1*K.1^5,K.1^13,K.1^11,-1*K.1^15,-1*K.1^3,K.1^7,K.1^7,-1*K.1^15,-1*K.1^7,-1*K.1^13,K.1^13,K.1^3,K.1^7,K.1^13,K.1^15,-1*K.1^7,K.1^7,K.1^15,-1*K.1^3,-1*K.1^3,-1*K.1^15,K.1,K.1^3,K.1,-1*K.1^5,K.1^5,-1*K.1,-1*K.1,-1*K.1^9,-1*K.1^11,-1*K.1,-1*K.1^7,K.1^11,K.1^9,K.1^5,K.1^9,K.1^11,K.1^3,-1*K.1^15,-1*K.1^11,-1*K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^15,K.1^9,K.1^11,-1*K.1^9,-1*K.1^7,-1*K.1,K.1^13,K.1^3,K.1^9,K.1^15,-1*K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,-1*K.1^4,K.1^12,-1*K.1^12,K.1^4,-1*K.1^12,K.1^4,K.1^12,-1*K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^2,-1*K.1^14,-1*K.1^10,K.1^6,-1*K.1^2,K.1^14,K.1^10,-1*K.1^6,-1*K.1^6,K.1^10,-1*K.1^2,K.1^14,K.1^6,-1*K.1^10,-1*K.1^14,K.1^2,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,K.1^4,-1*K.1^12,K.1^12,K.1^7,K.1^15,-1*K.1^9,K.1^11,-1*K.1^13,-1*K.1^9,K.1^15,K.1^11,-1*K.1^13,K.1^5,K.1^5,-1*K.1^7,-1*K.1^7,K.1,-1*K.1^3,K.1,-1*K.1^3,K.1^3,K.1^13,-1*K.1^15,-1*K.1,K.1^9,K.1^7,-1*K.1^5,-1*K.1^11,K.1^13,K.1^3,-1*K.1^15,-1*K.1,-1*K.1^5,-1*K.1^11,K.1^9,K.1^14,K.1^14,K.1^6,K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^2,K.1^6,-1*K.1^14,K.1^6,K.1^10,K.1^6,-1*K.1^6,K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^6,K.1^10,K.1^10,K.1^2,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^14,-1*K.1^11,K.1^11,-1*K.1^15,-1*K.1^11,-1*K.1^15,K.1^3,K.1^7,K.1^11,-1*K.1^3,-1*K.1^5,K.1,K.1^13,-1*K.1^9,-1*K.1^9,K.1,K.1^9,K.1^3,-1*K.1^3,-1*K.1^13,-1*K.1^9,-1*K.1^3,-1*K.1,K.1^9,-1*K.1^9,-1*K.1,K.1^13,K.1^13,K.1,-1*K.1^15,-1*K.1^13,-1*K.1^15,K.1^11,-1*K.1^11,K.1^15,K.1^15,K.1^7,K.1^5,K.1^15,K.1^9,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^5,-1*K.1^13,K.1,K.1^5,K.1^5,K.1^3,K.1^3,K.1^7,K.1^13,K.1^5,-1*K.1,-1*K.1^7,-1*K.1^5,K.1^7,K.1^9,K.1^15,-1*K.1^3,-1*K.1^13,-1*K.1^7,-1*K.1,K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^6,K.1^10,-1*K.1^14,K.1^2,K.1^6,-1*K.1^10,K.1^14,-1*K.1^2,-1*K.1^2,K.1^14,K.1^6,-1*K.1^10,K.1^2,-1*K.1^14,K.1^10,-1*K.1^6,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^4,K.1^13,K.1^5,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^3,K.1^5,-1*K.1^9,-1*K.1^15,-1*K.1^7,-1*K.1^7,-1*K.1^13,-1*K.1^13,K.1^11,-1*K.1,K.1^11,-1*K.1,K.1,K.1^15,-1*K.1^5,-1*K.1^11,K.1^3,K.1^13,K.1^7,K.1^9,K.1^15,K.1,-1*K.1^5,-1*K.1^11,K.1^7,K.1^9,K.1^3,-1*K.1^10,-1*K.1^10,K.1^2,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^6,-1*K.1^14,K.1^6,K.1^2,K.1^10,K.1^2,K.1^14,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^14,K.1^14,-1*K.1^6,K.1^6,-1*K.1^10,K.1^10,K.1^10,K.1^9,-1*K.1^9,-1*K.1^5,K.1^9,-1*K.1^5,K.1,K.1^13,-1*K.1^9,-1*K.1,K.1^7,K.1^11,K.1^15,-1*K.1^3,-1*K.1^3,K.1^11,K.1^3,K.1,-1*K.1,-1*K.1^15,-1*K.1^3,-1*K.1,-1*K.1^11,K.1^3,-1*K.1^3,-1*K.1^11,K.1^15,K.1^15,K.1^11,-1*K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^9,K.1^9,K.1^5,K.1^5,K.1^13,-1*K.1^7,K.1^5,K.1^3,K.1^7,-1*K.1^13,K.1^9,-1*K.1^13,K.1^7,-1*K.1^15,K.1^11,-1*K.1^7,-1*K.1^7,K.1,K.1,K.1^13,K.1^15,-1*K.1^7,-1*K.1^11,-1*K.1^13,K.1^7,K.1^13,K.1^3,K.1^5,-1*K.1,-1*K.1^15,-1*K.1^13,-1*K.1^11,-1*K.1^9,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^10,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^10,K.1^6,-1*K.1^2,K.1^14,K.1^14,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^14,K.1^2,-1*K.1^6,K.1^10,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^3,-1*K.1^11,K.1^13,K.1^7,K.1,K.1^13,-1*K.1^11,K.1^7,K.1,K.1^9,K.1^9,K.1^3,K.1^3,-1*K.1^5,K.1^15,-1*K.1^5,K.1^15,-1*K.1^15,-1*K.1,K.1^11,K.1^5,-1*K.1^13,-1*K.1^3,-1*K.1^9,-1*K.1^7,-1*K.1,-1*K.1^15,K.1^11,K.1^5,-1*K.1^9,-1*K.1^7,-1*K.1^13,K.1^6,K.1^6,-1*K.1^14,K.1^10,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^14,K.1^14,K.1^6,K.1^14,-1*K.1^6,K.1^14,K.1^2,K.1^14,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^6,-1*K.1^7,K.1^7,K.1^11,-1*K.1^7,K.1^11,-1*K.1^15,-1*K.1^3,K.1^7,K.1^15,-1*K.1^9,-1*K.1^5,-1*K.1,K.1^13,K.1^13,-1*K.1^5,-1*K.1^13,-1*K.1^15,K.1^15,K.1,K.1^13,K.1^15,K.1^5,-1*K.1^13,K.1^13,K.1^5,-1*K.1,-1*K.1,-1*K.1^5,K.1^11,K.1,K.1^11,K.1^7,-1*K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^3,K.1^9,-1*K.1^11,-1*K.1^13,-1*K.1^9,K.1^3,-1*K.1^7,K.1^3,-1*K.1^9,K.1,-1*K.1^5,K.1^9,K.1^9,-1*K.1^15,-1*K.1^15,-1*K.1^3,-1*K.1,K.1^9,K.1^5,K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^13,-1*K.1^11,K.1^15,K.1,K.1^3,K.1^5,K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^6,K.1^10,-1*K.1^14,K.1^2,K.1^6,-1*K.1^10,K.1^14,-1*K.1^2,-1*K.1^2,K.1^14,K.1^6,-1*K.1^10,K.1^2,-1*K.1^14,K.1^10,-1*K.1^6,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^4,-1*K.1^13,-1*K.1^5,K.1^3,K.1^9,K.1^15,K.1^3,-1*K.1^5,K.1^9,K.1^15,K.1^7,K.1^7,K.1^13,K.1^13,-1*K.1^11,K.1,-1*K.1^11,K.1,-1*K.1,-1*K.1^15,K.1^5,K.1^11,-1*K.1^3,-1*K.1^13,-1*K.1^7,-1*K.1^9,-1*K.1^15,-1*K.1,K.1^5,K.1^11,-1*K.1^7,-1*K.1^9,-1*K.1^3,-1*K.1^10,-1*K.1^10,K.1^2,-1*K.1^6,K.1^6,K.1^14,-1*K.1^14,-1*K.1^6,K.1^6,-1*K.1^14,-1*K.1^6,-1*K.1^14,K.1^6,K.1^2,K.1^10,K.1^2,K.1^14,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^14,K.1^14,-1*K.1^6,K.1^6,-1*K.1^10,K.1^10,K.1^10,-1*K.1^9,K.1^9,K.1^5,-1*K.1^9,K.1^5,-1*K.1,-1*K.1^13,K.1^9,K.1,-1*K.1^7,-1*K.1^11,-1*K.1^15,K.1^3,K.1^3,-1*K.1^11,-1*K.1^3,-1*K.1,K.1,K.1^15,K.1^3,K.1,K.1^11,-1*K.1^3,K.1^3,K.1^11,-1*K.1^15,-1*K.1^15,-1*K.1^11,K.1^5,K.1^15,K.1^5,K.1^9,-1*K.1^9,-1*K.1^5,-1*K.1^5,-1*K.1^13,K.1^7,-1*K.1^5,-1*K.1^3,-1*K.1^7,K.1^13,-1*K.1^9,K.1^13,-1*K.1^7,K.1^15,-1*K.1^11,K.1^7,K.1^7,-1*K.1,-1*K.1,-1*K.1^13,-1*K.1^15,K.1^7,K.1^11,K.1^13,-1*K.1^7,-1*K.1^13,-1*K.1^3,-1*K.1^5,K.1,K.1^15,K.1^13,K.1^11,K.1^9,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^10,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^10,K.1^6,-1*K.1^2,K.1^14,K.1^14,-1*K.1^2,-1*K.1^10,K.1^6,-1*K.1^14,K.1^2,-1*K.1^6,K.1^10,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,K.1^3,K.1^11,-1*K.1^13,-1*K.1^7,-1*K.1,-1*K.1^13,K.1^11,-1*K.1^7,-1*K.1,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,K.1^5,-1*K.1^15,K.1^5,-1*K.1^15,K.1^15,K.1,-1*K.1^11,-1*K.1^5,K.1^13,K.1^3,K.1^9,K.1^7,K.1,K.1^15,-1*K.1^11,-1*K.1^5,K.1^9,K.1^7,K.1^13,K.1^6,K.1^6,-1*K.1^14,K.1^10,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,-1*K.1^10,K.1^2,K.1^10,K.1^2,-1*K.1^10,-1*K.1^14,-1*K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^14,K.1^14,K.1^6,K.1^14,-1*K.1^6,K.1^14,K.1^2,K.1^14,-1*K.1^2,-1*K.1^2,K.1^10,-1*K.1^10,K.1^6,-1*K.1^6,-1*K.1^6,K.1^7,-1*K.1^7,-1*K.1^11,K.1^7,-1*K.1^11,K.1^15,K.1^3,-1*K.1^7,-1*K.1^15,K.1^9,K.1^5,K.1,-1*K.1^13,-1*K.1^13,K.1^5,K.1^13,K.1^15,-1*K.1^15,-1*K.1,-1*K.1^13,-1*K.1^15,-1*K.1^5,K.1^13,-1*K.1^13,-1*K.1^5,K.1,K.1,K.1^5,-1*K.1^11,-1*K.1,-1*K.1^11,-1*K.1^7,K.1^7,K.1^11,K.1^11,K.1^3,-1*K.1^9,K.1^11,K.1^13,K.1^9,-1*K.1^3,K.1^7,-1*K.1^3,K.1^9,-1*K.1,K.1^5,-1*K.1^9,-1*K.1^9,K.1^15,K.1^15,K.1^3,K.1,-1*K.1^9,-1*K.1^5,-1*K.1^3,K.1^9,K.1^3,K.1^13,K.1^11,-1*K.1^15,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^10,K.1^14,-1*K.1^2,-1*K.1^6,K.1^10,-1*K.1^14,K.1^2,K.1^2,-1*K.1^14,-1*K.1^6,K.1^10,-1*K.1^2,K.1^14,-1*K.1^10,K.1^6,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^4,-1*K.1^5,K.1^13,K.1^11,K.1,-1*K.1^7,K.1^11,K.1^13,K.1,-1*K.1^7,K.1^15,K.1^15,K.1^5,K.1^5,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,K.1^7,-1*K.1^13,-1*K.1^3,-1*K.1^11,-1*K.1^5,-1*K.1^15,-1*K.1,K.1^7,K.1^9,-1*K.1^13,-1*K.1^3,-1*K.1^15,-1*K.1,-1*K.1^11,K.1^10,K.1^10,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,K.1^14,K.1^6,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^10,K.1^2,K.1^14,K.1^2,-1*K.1^14,-1*K.1^14,K.1^6,-1*K.1^6,K.1^10,-1*K.1^10,-1*K.1^10,-1*K.1,K.1,-1*K.1^13,-1*K.1,-1*K.1^13,K.1^9,-1*K.1^5,K.1,-1*K.1^9,-1*K.1^15,K.1^3,K.1^7,K.1^11,K.1^11,K.1^3,-1*K.1^11,K.1^9,-1*K.1^9,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1^3,-1*K.1^11,K.1^11,-1*K.1^3,K.1^7,K.1^7,K.1^3,-1*K.1^13,-1*K.1^7,-1*K.1^13,K.1,-1*K.1,K.1^13,K.1^13,-1*K.1^5,K.1^15,K.1^13,-1*K.1^11,-1*K.1^15,K.1^5,-1*K.1,K.1^5,-1*K.1^15,-1*K.1^7,K.1^3,K.1^15,K.1^15,K.1^9,K.1^9,-1*K.1^5,K.1^7,K.1^15,-1*K.1^3,K.1^5,-1*K.1^15,-1*K.1^5,-1*K.1^11,K.1^13,-1*K.1^9,-1*K.1^7,K.1^5,-1*K.1^3,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^10,K.1^6,-1*K.1^2,K.1^14,K.1^10,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^14,K.1^2,K.1^10,-1*K.1^6,K.1^14,-1*K.1^2,K.1^6,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,K.1^11,-1*K.1^3,-1*K.1^5,-1*K.1^15,K.1^9,-1*K.1^5,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1,-1*K.1,-1*K.1^11,-1*K.1^11,-1*K.1^13,K.1^7,-1*K.1^13,K.1^7,-1*K.1^7,-1*K.1^9,K.1^3,K.1^13,K.1^5,K.1^11,K.1,K.1^15,-1*K.1^9,-1*K.1^7,K.1^3,K.1^13,K.1,K.1^15,K.1^5,-1*K.1^6,-1*K.1^6,K.1^14,-1*K.1^10,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^10,K.1^14,K.1^6,K.1^14,K.1^2,K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^14,K.1^2,K.1^2,-1*K.1^10,K.1^10,-1*K.1^6,K.1^6,K.1^6,K.1^15,-1*K.1^15,K.1^3,K.1^15,K.1^3,-1*K.1^7,K.1^11,-1*K.1^15,K.1^7,K.1,-1*K.1^13,-1*K.1^9,-1*K.1^5,-1*K.1^5,-1*K.1^13,K.1^5,-1*K.1^7,K.1^7,K.1^9,-1*K.1^5,K.1^7,K.1^13,K.1^5,-1*K.1^5,K.1^13,-1*K.1^9,-1*K.1^9,-1*K.1^13,K.1^3,K.1^9,K.1^3,-1*K.1^15,K.1^15,-1*K.1^3,-1*K.1^3,K.1^11,-1*K.1,-1*K.1^3,K.1^5,K.1,-1*K.1^11,K.1^15,-1*K.1^11,K.1,K.1^9,-1*K.1^13,-1*K.1,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^11,-1*K.1^9,-1*K.1,K.1^13,-1*K.1^11,K.1,K.1^11,K.1^5,-1*K.1^3,K.1^7,K.1^9,-1*K.1^11,K.1^13,-1*K.1^15,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1,-1,-1,-1,-1*K.1^12,K.1^4,-1*K.1^4,K.1^12,-1*K.1^4,K.1^12,K.1^4,-1*K.1^12,K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,K.1^6,-1*K.1^10,K.1^14,-1*K.1^2,-1*K.1^6,K.1^10,-1*K.1^14,K.1^2,K.1^2,-1*K.1^14,-1*K.1^6,K.1^10,-1*K.1^2,K.1^14,-1*K.1^10,K.1^6,-1*K.1^12,K.1^12,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^4,K.1^4,K.1^12,-1*K.1^4,K.1^4,K.1^5,-1*K.1^13,-1*K.1^11,-1*K.1,K.1^7,-1*K.1^11,-1*K.1^13,-1*K.1,K.1^7,-1*K.1^15,-1*K.1^15,-1*K.1^5,-1*K.1^5,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^7,K.1^13,K.1^3,K.1^11,K.1^5,K.1^15,K.1,-1*K.1^7,-1*K.1^9,K.1^13,K.1^3,K.1^15,K.1,K.1^11,K.1^10,K.1^10,-1*K.1^2,K.1^6,-1*K.1^6,-1*K.1^14,K.1^14,K.1^6,-1*K.1^6,K.1^14,K.1^6,K.1^14,-1*K.1^6,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^14,-1*K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^10,K.1^2,K.1^14,K.1^2,-1*K.1^14,-1*K.1^14,K.1^6,-1*K.1^6,K.1^10,-1*K.1^10,-1*K.1^10,K.1,-1*K.1,K.1^13,K.1,K.1^13,-1*K.1^9,K.1^5,-1*K.1,K.1^9,K.1^15,-1*K.1^3,-1*K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^3,K.1^11,-1*K.1^9,K.1^9,K.1^7,-1*K.1^11,K.1^9,K.1^3,K.1^11,-1*K.1^11,K.1^3,-1*K.1^7,-1*K.1^7,-1*K.1^3,K.1^13,K.1^7,K.1^13,-1*K.1,K.1,-1*K.1^13,-1*K.1^13,K.1^5,-1*K.1^15,-1*K.1^13,K.1^11,K.1^15,-1*K.1^5,K.1,-1*K.1^5,K.1^15,K.1^7,-1*K.1^3,-1*K.1^15,-1*K.1^15,-1*K.1^9,-1*K.1^9,K.1^5,-1*K.1^7,-1*K.1^15,K.1^3,-1*K.1^5,K.1^15,K.1^5,K.1^11,-1*K.1^13,K.1^9,K.1^7,-1*K.1^5,K.1^3,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(32: Sparse := true); S := [ K |1,1,1,1,-1,-1,1,1,K.1^8,-1*K.1^8,-1*K.1^8,K.1^8,-1,-1,-1,-1,K.1^4,-1*K.1^12,K.1^12,-1*K.1^4,K.1^12,-1*K.1^4,-1*K.1^12,K.1^4,-1*K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,K.1^8,K.1^8,-1*K.1^8,-1*K.1^10,K.1^6,-1*K.1^2,K.1^14,K.1^10,-1*K.1^6,K.1^2,-1*K.1^14,-1*K.1^14,K.1^2,K.1^10,-1*K.1^6,K.1^14,-1*K.1^2,K.1^6,-1*K.1^10,K.1^4,-1*K.1^4,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^4,-1*K.1^4,K.1^4,-1*K.1^4,K.1^4,K.1^12,-1*K.1^12,-1*K.1^4,K.1^12,-1*K.1^12,-1*K.1^11,K.1^3,K.1^5,K.1^15,-1*K.1^9,K.1^5,K.1^3,K.1^15,-1*K.1^9,K.1,K.1,K.1^11,K.1^11,K.1^13,-1*K.1^7,K.1^13,-1*K.1^7,K.1^7,K.1^9,-1*K.1^3,-1*K.1^13,-1*K.1^5,-1*K.1^11,-1*K.1,-1*K.1^15,K.1^9,K.1^7,-1*K.1^3,-1*K.1^13,-1*K.1,-1*K.1^15,-1*K.1^5,-1*K.1^6,-1*K.1^6,K.1^14,-1*K.1^10,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^10,K.1^14,K.1^6,K.1^14,K.1^2,K.1^14,-1*K.1^14,-1*K.1^6,-1*K.1^14,K.1^6,-1*K.1^14,-1*K.1^2,-1*K.1^14,K.1^2,K.1^2,-1*K.1^10,K.1^10,-1*K.1^6,K.1^6,K.1^6,-1*K.1^15,K.1^15,-1*K.1^3,-1*K.1^15,-1*K.1^3,K.1^7,-1*K.1^11,K.1^15,-1*K.1^7,-1*K.1,K.1^13,K.1^9,K.1^5,K.1^5,K.1^13,-1*K.1^5,K.1^7,-1*K.1^7,-1*K.1^9,K.1^5,-1*K.1^7,-1*K.1^13,-1*K.1^5,K.1^5,-1*K.1^13,K.1^9,K.1^9,K.1^13,-1*K.1^3,-1*K.1^9,-1*K.1^3,K.1^15,-1*K.1^15,K.1^3,K.1^3,-1*K.1^11,K.1,K.1^3,-1*K.1^5,-1*K.1,K.1^11,-1*K.1^15,K.1^11,-1*K.1,-1*K.1^9,K.1^13,K.1,K.1,K.1^7,K.1^7,-1*K.1^11,K.1^9,K.1,-1*K.1^13,K.1^11,-1*K.1,-1*K.1^11,-1*K.1^5,K.1^3,-1*K.1^7,-1*K.1^9,K.1^11,-1*K.1^13,K.1^15,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^4,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^4,K.1^4,K.1^20,K.1^20,K.1^4,K.1^20,-1*K.1^20,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,K.1^15,-1*K.1^15,-1*K.1^9,K.1^3,K.1^21,-1*K.1^9,-1*K.1^15,K.1^3,K.1^21,-1*K.1^21,-1*K.1^21,K.1^15,K.1^15,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,-1*K.1^21,K.1^3,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^21,K.1^3,-1*K.1^9,K.1^14,-1*K.1^22,K.1^22,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^22,-1*K.1^14,K.1^10,-1*K.1^14,-1*K.1^14,K.1^14,K.1^22,K.1^14,K.1^22,K.1^10,-1*K.1^14,-1*K.1^2,K.1^10,K.1^2,K.1^2,-1*K.1^22,K.1^14,-1*K.1^22,K.1^19,-1*K.1^11,K.1^7,-1*K.1^11,K.1^23,-1*K.1^19,-1*K.1^23,K.1^19,K.1^11,K.1^13,-1*K.1^17,K.1^5,K.1^17,K.1,-1*K.1^17,K.1,K.1^11,K.1^11,-1*K.1^13,K.1^17,-1*K.1^19,-1*K.1^17,K.1^17,K.1,-1*K.1^17,-1*K.1^13,-1*K.1^13,-1*K.1,K.1^7,-1*K.1^13,K.1^23,K.1^19,K.1^19,K.1^23,K.1^7,-1*K.1^7,-1*K.1^5,K.1^7,K.1^17,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^23,K.1^13,K.1^5,-1*K.1,K.1^13,K.1^13,K.1^11,-1*K.1^19,-1*K.1^23,K.1^5,-1*K.1^5,-1*K.1,-1*K.1^23,-1*K.1^5,-1*K.1^7,K.1,K.1^23,-1*K.1^19,K.1^5,-1*K.1^7,-1*K.1,-1*K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^20,-1*K.1^20,K.1^20,K.1^4,K.1^20,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^9,K.1^9,K.1^15,-1*K.1^21,-1*K.1^3,K.1^15,K.1^9,-1*K.1^21,-1*K.1^3,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^15,K.1^21,-1*K.1^15,K.1^21,K.1^21,-1*K.1^3,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,K.1^3,-1*K.1^21,-1*K.1^3,K.1^21,K.1^9,-1*K.1^15,K.1^3,-1*K.1^21,K.1^15,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^22,K.1^14,K.1^22,K.1^22,K.1^14,-1*K.1^22,-1*K.1^14,K.1^14,K.1^22,K.1^14,-1*K.1^2,K.1^2,K.1^10,-1*K.1^14,K.1^10,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^14,K.1^10,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^22,K.1^2,-1*K.1^10,K.1^2,-1*K.1^5,K.1^13,-1*K.1^17,K.1^13,-1*K.1,K.1^5,K.1,-1*K.1^5,-1*K.1^13,-1*K.1^11,K.1^7,-1*K.1^19,-1*K.1^7,-1*K.1^23,K.1^7,-1*K.1^23,-1*K.1^13,-1*K.1^13,K.1^11,-1*K.1^7,K.1^5,K.1^7,-1*K.1^7,-1*K.1^23,K.1^7,K.1^11,K.1^11,K.1^23,-1*K.1^17,K.1^11,-1*K.1,-1*K.1^5,-1*K.1^5,-1*K.1,-1*K.1^17,K.1^17,K.1^19,-1*K.1^17,-1*K.1^7,K.1^19,K.1^17,K.1^13,K.1,-1*K.1^11,-1*K.1^19,K.1^23,-1*K.1^11,-1*K.1^11,-1*K.1^13,K.1^5,K.1,-1*K.1^19,K.1^19,K.1^23,K.1,K.1^19,K.1^17,-1*K.1^23,-1*K.1,K.1^5,-1*K.1^19,K.1^17,K.1^23,K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^4,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^4,K.1^4,K.1^20,K.1^20,K.1^4,K.1^20,-1*K.1^20,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^15,K.1^15,K.1^9,-1*K.1^3,-1*K.1^21,K.1^9,K.1^15,-1*K.1^3,-1*K.1^21,K.1^21,K.1^21,-1*K.1^15,-1*K.1^15,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,K.1^21,-1*K.1^3,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,K.1^9,K.1^14,-1*K.1^22,K.1^22,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,-1*K.1^10,K.1^2,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^22,-1*K.1^22,-1*K.1^14,K.1^10,-1*K.1^14,-1*K.1^14,K.1^14,K.1^22,K.1^14,K.1^22,K.1^10,-1*K.1^14,-1*K.1^2,K.1^10,K.1^2,K.1^2,-1*K.1^22,K.1^14,-1*K.1^22,-1*K.1^19,K.1^11,-1*K.1^7,K.1^11,-1*K.1^23,K.1^19,K.1^23,-1*K.1^19,-1*K.1^11,-1*K.1^13,K.1^17,-1*K.1^5,-1*K.1^17,-1*K.1,K.1^17,-1*K.1,-1*K.1^11,-1*K.1^11,K.1^13,-1*K.1^17,K.1^19,K.1^17,-1*K.1^17,-1*K.1,K.1^17,K.1^13,K.1^13,K.1,-1*K.1^7,K.1^13,-1*K.1^23,-1*K.1^19,-1*K.1^19,-1*K.1^23,-1*K.1^7,K.1^7,K.1^5,-1*K.1^7,-1*K.1^17,K.1^5,K.1^7,K.1^11,K.1^23,-1*K.1^13,-1*K.1^5,K.1,-1*K.1^13,-1*K.1^13,-1*K.1^11,K.1^19,K.1^23,-1*K.1^5,K.1^5,K.1,K.1^23,K.1^5,K.1^7,-1*K.1,-1*K.1^23,K.1^19,-1*K.1^5,K.1^7,K.1,K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^20,-1*K.1^20,K.1^20,K.1^4,K.1^20,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^20,K.1^4,K.1^9,-1*K.1^9,-1*K.1^15,K.1^21,K.1^3,-1*K.1^15,-1*K.1^9,K.1^21,K.1^3,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^15,-1*K.1^21,K.1^15,-1*K.1^21,-1*K.1^21,K.1^3,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,-1*K.1^3,K.1^21,K.1^3,-1*K.1^21,-1*K.1^9,K.1^15,-1*K.1^3,K.1^21,-1*K.1^15,-1*K.1^10,K.1^2,-1*K.1^2,-1*K.1^22,K.1^14,K.1^22,K.1^22,K.1^14,-1*K.1^22,-1*K.1^14,K.1^14,K.1^22,K.1^14,-1*K.1^2,K.1^2,K.1^10,-1*K.1^14,K.1^10,K.1^10,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^14,K.1^10,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^22,K.1^2,-1*K.1^10,K.1^2,K.1^5,-1*K.1^13,K.1^17,-1*K.1^13,K.1,-1*K.1^5,-1*K.1,K.1^5,K.1^13,K.1^11,-1*K.1^7,K.1^19,K.1^7,K.1^23,-1*K.1^7,K.1^23,K.1^13,K.1^13,-1*K.1^11,K.1^7,-1*K.1^5,-1*K.1^7,K.1^7,K.1^23,-1*K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^23,K.1^17,-1*K.1^11,K.1,K.1^5,K.1^5,K.1,K.1^17,-1*K.1^17,-1*K.1^19,K.1^17,K.1^7,-1*K.1^19,-1*K.1^17,-1*K.1^13,-1*K.1,K.1^11,K.1^19,-1*K.1^23,K.1^11,K.1^11,K.1^13,-1*K.1^5,-1*K.1,K.1^19,-1*K.1^19,-1*K.1^23,-1*K.1,-1*K.1^19,-1*K.1^17,K.1^23,K.1,-1*K.1^5,K.1^19,-1*K.1^17,-1*K.1^23,-1*K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,K.1^4,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^4,K.1^4,K.1^20,K.1^20,K.1^4,K.1^20,-1*K.1^20,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^3,K.1^3,K.1^21,K.1^15,K.1^9,K.1^21,K.1^3,K.1^15,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^21,-1*K.1^15,-1*K.1^21,-1*K.1^15,-1*K.1^15,K.1^9,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^9,K.1^15,K.1^9,-1*K.1^15,K.1^3,-1*K.1^21,-1*K.1^9,K.1^15,K.1^21,-1*K.1^14,K.1^22,-1*K.1^22,-1*K.1^2,K.1^10,K.1^2,K.1^2,K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^22,K.1^22,K.1^14,-1*K.1^10,K.1^14,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^10,K.1^14,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^22,-1*K.1^14,K.1^22,-1*K.1^7,-1*K.1^23,K.1^19,-1*K.1^23,-1*K.1^11,K.1^7,K.1^11,-1*K.1^7,K.1^23,K.1,-1*K.1^5,-1*K.1^17,K.1^5,-1*K.1^13,-1*K.1^5,-1*K.1^13,K.1^23,K.1^23,-1*K.1,K.1^5,K.1^7,-1*K.1^5,K.1^5,-1*K.1^13,-1*K.1^5,-1*K.1,-1*K.1,K.1^13,K.1^19,-1*K.1,-1*K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^11,K.1^19,-1*K.1^19,K.1^17,K.1^19,K.1^5,K.1^17,-1*K.1^19,-1*K.1^23,K.1^11,K.1,-1*K.1^17,K.1^13,K.1,K.1,K.1^23,K.1^7,K.1^11,-1*K.1^17,K.1^17,K.1^13,K.1^11,K.1^17,-1*K.1^19,-1*K.1^13,-1*K.1^11,K.1^7,-1*K.1^17,-1*K.1^19,K.1^13,-1*K.1^23,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^20,-1*K.1^20,K.1^20,K.1^4,K.1^20,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^20,K.1^4,K.1^21,-1*K.1^21,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^3,-1*K.1^21,-1*K.1^9,-1*K.1^15,K.1^15,K.1^15,K.1^21,K.1^21,K.1^3,K.1^9,K.1^3,K.1^9,K.1^9,-1*K.1^15,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,K.1^15,-1*K.1^9,-1*K.1^15,K.1^9,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,-1*K.1^3,K.1^10,-1*K.1^2,K.1^2,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^22,-1*K.1^14,K.1^22,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^10,K.1^14,-1*K.1^10,-1*K.1^10,K.1^10,K.1^2,K.1^10,K.1^2,K.1^14,-1*K.1^10,-1*K.1^22,K.1^14,K.1^22,K.1^22,-1*K.1^2,K.1^10,-1*K.1^2,K.1^17,K.1,-1*K.1^5,K.1,K.1^13,-1*K.1^17,-1*K.1^13,K.1^17,-1*K.1,-1*K.1^23,K.1^19,K.1^7,-1*K.1^19,K.1^11,K.1^19,K.1^11,-1*K.1,-1*K.1,K.1^23,-1*K.1^19,-1*K.1^17,K.1^19,-1*K.1^19,K.1^11,K.1^19,K.1^23,K.1^23,-1*K.1^11,-1*K.1^5,K.1^23,K.1^13,K.1^17,K.1^17,K.1^13,-1*K.1^5,K.1^5,-1*K.1^7,-1*K.1^5,-1*K.1^19,-1*K.1^7,K.1^5,K.1,-1*K.1^13,-1*K.1^23,K.1^7,-1*K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1,-1*K.1^17,-1*K.1^13,K.1^7,-1*K.1^7,-1*K.1^11,-1*K.1^13,-1*K.1^7,K.1^5,K.1^11,K.1^13,-1*K.1^17,K.1^7,K.1^5,-1*K.1^11,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,K.1^4,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^4,K.1^4,K.1^20,K.1^20,K.1^4,K.1^20,-1*K.1^20,-1*K.1^20,K.1^20,-1*K.1^4,-1*K.1^20,K.1^3,-1*K.1^3,-1*K.1^21,-1*K.1^15,-1*K.1^9,-1*K.1^21,-1*K.1^3,-1*K.1^15,-1*K.1^9,K.1^9,K.1^9,K.1^3,K.1^3,K.1^21,K.1^15,K.1^21,K.1^15,K.1^15,-1*K.1^9,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,K.1^9,-1*K.1^15,-1*K.1^9,K.1^15,-1*K.1^3,K.1^21,K.1^9,-1*K.1^15,-1*K.1^21,-1*K.1^14,K.1^22,-1*K.1^22,-1*K.1^2,K.1^10,K.1^2,K.1^2,K.1^10,-1*K.1^2,-1*K.1^10,K.1^10,K.1^2,K.1^10,-1*K.1^22,K.1^22,K.1^14,-1*K.1^10,K.1^14,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^10,K.1^14,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^2,K.1^22,-1*K.1^14,K.1^22,K.1^7,K.1^23,-1*K.1^19,K.1^23,K.1^11,-1*K.1^7,-1*K.1^11,K.1^7,-1*K.1^23,-1*K.1,K.1^5,K.1^17,-1*K.1^5,K.1^13,K.1^5,K.1^13,-1*K.1^23,-1*K.1^23,K.1,-1*K.1^5,-1*K.1^7,K.1^5,-1*K.1^5,K.1^13,K.1^5,K.1,K.1,-1*K.1^13,-1*K.1^19,K.1,K.1^11,K.1^7,K.1^7,K.1^11,-1*K.1^19,K.1^19,-1*K.1^17,-1*K.1^19,-1*K.1^5,-1*K.1^17,K.1^19,K.1^23,-1*K.1^11,-1*K.1,K.1^17,-1*K.1^13,-1*K.1,-1*K.1,-1*K.1^23,-1*K.1^7,-1*K.1^11,K.1^17,-1*K.1^17,-1*K.1^13,-1*K.1^11,-1*K.1^17,K.1^19,K.1^13,K.1^11,-1*K.1^7,K.1^17,K.1^19,-1*K.1^13,K.1^23,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^20,-1*K.1^20,K.1^20,K.1^4,K.1^20,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^4,K.1^4,-1*K.1^4,K.1^20,K.1^4,-1*K.1^21,K.1^21,K.1^3,K.1^9,K.1^15,K.1^3,K.1^21,K.1^9,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^21,-1*K.1^21,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^15,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^15,K.1^9,K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,K.1^3,K.1^10,-1*K.1^2,K.1^2,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^22,-1*K.1^14,K.1^22,K.1^14,-1*K.1^14,-1*K.1^22,-1*K.1^14,K.1^2,-1*K.1^2,-1*K.1^10,K.1^14,-1*K.1^10,-1*K.1^10,K.1^10,K.1^2,K.1^10,K.1^2,K.1^14,-1*K.1^10,-1*K.1^22,K.1^14,K.1^22,K.1^22,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^17,-1*K.1,K.1^5,-1*K.1,-1*K.1^13,K.1^17,K.1^13,-1*K.1^17,K.1,K.1^23,-1*K.1^19,-1*K.1^7,K.1^19,-1*K.1^11,-1*K.1^19,-1*K.1^11,K.1,K.1,-1*K.1^23,K.1^19,K.1^17,-1*K.1^19,K.1^19,-1*K.1^11,-1*K.1^19,-1*K.1^23,-1*K.1^23,K.1^11,K.1^5,-1*K.1^23,-1*K.1^13,-1*K.1^17,-1*K.1^17,-1*K.1^13,K.1^5,-1*K.1^5,K.1^7,K.1^5,K.1^19,K.1^7,-1*K.1^5,-1*K.1,K.1^13,K.1^23,-1*K.1^7,K.1^11,K.1^23,K.1^23,K.1,K.1^17,K.1^13,-1*K.1^7,K.1^7,K.1^11,K.1^13,K.1^7,-1*K.1^5,-1*K.1^11,-1*K.1^13,K.1^17,-1*K.1^7,-1*K.1^5,K.1^11,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,K.1^20,K.1^4,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^20,K.1^20,-1*K.1^20,K.1^4,K.1^20,-1*K.1^9,K.1^9,K.1^15,-1*K.1^21,-1*K.1^3,K.1^15,K.1^9,-1*K.1^21,-1*K.1^3,K.1^3,K.1^3,-1*K.1^9,-1*K.1^9,-1*K.1^15,K.1^21,-1*K.1^15,K.1^21,K.1^21,-1*K.1^3,K.1^9,-1*K.1^15,K.1^15,-1*K.1^9,K.1^3,-1*K.1^21,-1*K.1^3,K.1^21,K.1^9,-1*K.1^15,K.1^3,-1*K.1^21,K.1^15,K.1^2,-1*K.1^10,K.1^10,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^14,-1*K.1^22,K.1^14,K.1^22,-1*K.1^22,-1*K.1^14,-1*K.1^22,K.1^10,-1*K.1^10,-1*K.1^2,K.1^22,-1*K.1^2,-1*K.1^2,K.1^2,K.1^10,K.1^2,K.1^10,K.1^22,-1*K.1^2,-1*K.1^14,K.1^22,K.1^14,K.1^14,-1*K.1^10,K.1^2,-1*K.1^10,K.1^13,-1*K.1^5,-1*K.1,-1*K.1^5,-1*K.1^17,-1*K.1^13,K.1^17,K.1^13,K.1^5,K.1^19,K.1^23,K.1^11,-1*K.1^23,-1*K.1^7,K.1^23,-1*K.1^7,K.1^5,K.1^5,-1*K.1^19,-1*K.1^23,-1*K.1^13,K.1^23,-1*K.1^23,-1*K.1^7,K.1^23,-1*K.1^19,-1*K.1^19,K.1^7,-1*K.1,-1*K.1^19,-1*K.1^17,K.1^13,K.1^13,-1*K.1^17,-1*K.1,K.1,-1*K.1^11,-1*K.1,-1*K.1^23,-1*K.1^11,K.1,-1*K.1^5,K.1^17,K.1^19,K.1^11,K.1^7,K.1^19,K.1^19,K.1^5,-1*K.1^13,K.1^17,K.1^11,-1*K.1^11,K.1^7,K.1^17,-1*K.1^11,K.1,-1*K.1^7,-1*K.1^17,-1*K.1^13,K.1^11,K.1,K.1^7,-1*K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^20,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^20,K.1^20,K.1^4,K.1^4,K.1^20,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^15,-1*K.1^15,-1*K.1^9,K.1^3,K.1^21,-1*K.1^9,-1*K.1^15,K.1^3,K.1^21,-1*K.1^21,-1*K.1^21,K.1^15,K.1^15,K.1^9,-1*K.1^3,K.1^9,-1*K.1^3,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,-1*K.1^9,K.1^15,-1*K.1^21,K.1^3,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^21,K.1^3,-1*K.1^9,-1*K.1^22,K.1^14,-1*K.1^14,-1*K.1^10,K.1^2,K.1^10,K.1^10,K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^14,K.1^14,K.1^22,-1*K.1^2,K.1^22,K.1^22,-1*K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,K.1^22,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^14,-1*K.1^22,K.1^14,-1*K.1^11,K.1^19,K.1^23,K.1^19,K.1^7,K.1^11,-1*K.1^7,-1*K.1^11,-1*K.1^19,-1*K.1^5,-1*K.1,-1*K.1^13,K.1,K.1^17,-1*K.1,K.1^17,-1*K.1^19,-1*K.1^19,K.1^5,K.1,K.1^11,-1*K.1,K.1,K.1^17,-1*K.1,K.1^5,K.1^5,-1*K.1^17,K.1^23,K.1^5,K.1^7,-1*K.1^11,-1*K.1^11,K.1^7,K.1^23,-1*K.1^23,K.1^13,K.1^23,K.1,K.1^13,-1*K.1^23,K.1^19,-1*K.1^7,-1*K.1^5,-1*K.1^13,-1*K.1^17,-1*K.1^5,-1*K.1^5,-1*K.1^19,K.1^11,-1*K.1^7,-1*K.1^13,K.1^13,-1*K.1^17,-1*K.1^7,K.1^13,-1*K.1^23,K.1^17,K.1^7,K.1^11,-1*K.1^13,-1*K.1^23,-1*K.1^17,K.1^19,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,K.1^20,K.1^4,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^20,K.1^20,-1*K.1^20,K.1^4,K.1^20,K.1^9,-1*K.1^9,-1*K.1^15,K.1^21,K.1^3,-1*K.1^15,-1*K.1^9,K.1^21,K.1^3,-1*K.1^3,-1*K.1^3,K.1^9,K.1^9,K.1^15,-1*K.1^21,K.1^15,-1*K.1^21,-1*K.1^21,K.1^3,-1*K.1^9,K.1^15,-1*K.1^15,K.1^9,-1*K.1^3,K.1^21,K.1^3,-1*K.1^21,-1*K.1^9,K.1^15,-1*K.1^3,K.1^21,-1*K.1^15,K.1^2,-1*K.1^10,K.1^10,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^14,-1*K.1^22,K.1^14,K.1^22,-1*K.1^22,-1*K.1^14,-1*K.1^22,K.1^10,-1*K.1^10,-1*K.1^2,K.1^22,-1*K.1^2,-1*K.1^2,K.1^2,K.1^10,K.1^2,K.1^10,K.1^22,-1*K.1^2,-1*K.1^14,K.1^22,K.1^14,K.1^14,-1*K.1^10,K.1^2,-1*K.1^10,-1*K.1^13,K.1^5,K.1,K.1^5,K.1^17,K.1^13,-1*K.1^17,-1*K.1^13,-1*K.1^5,-1*K.1^19,-1*K.1^23,-1*K.1^11,K.1^23,K.1^7,-1*K.1^23,K.1^7,-1*K.1^5,-1*K.1^5,K.1^19,K.1^23,K.1^13,-1*K.1^23,K.1^23,K.1^7,-1*K.1^23,K.1^19,K.1^19,-1*K.1^7,K.1,K.1^19,K.1^17,-1*K.1^13,-1*K.1^13,K.1^17,K.1,-1*K.1,K.1^11,K.1,K.1^23,K.1^11,-1*K.1,K.1^5,-1*K.1^17,-1*K.1^19,-1*K.1^11,-1*K.1^7,-1*K.1^19,-1*K.1^19,-1*K.1^5,K.1^13,-1*K.1^17,-1*K.1^11,K.1^11,-1*K.1^7,-1*K.1^17,K.1^11,-1*K.1,K.1^7,K.1^17,K.1^13,-1*K.1^11,-1*K.1,-1*K.1^7,K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^20,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^20,K.1^20,K.1^4,K.1^4,K.1^20,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^15,K.1^15,K.1^9,-1*K.1^3,-1*K.1^21,K.1^9,K.1^15,-1*K.1^3,-1*K.1^21,K.1^21,K.1^21,-1*K.1^15,-1*K.1^15,-1*K.1^9,K.1^3,-1*K.1^9,K.1^3,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,K.1^9,-1*K.1^15,K.1^21,-1*K.1^3,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,K.1^9,-1*K.1^22,K.1^14,-1*K.1^14,-1*K.1^10,K.1^2,K.1^10,K.1^10,K.1^2,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,K.1^2,-1*K.1^14,K.1^14,K.1^22,-1*K.1^2,K.1^22,K.1^22,-1*K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,K.1^22,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,K.1^14,-1*K.1^22,K.1^14,K.1^11,-1*K.1^19,-1*K.1^23,-1*K.1^19,-1*K.1^7,-1*K.1^11,K.1^7,K.1^11,K.1^19,K.1^5,K.1,K.1^13,-1*K.1,-1*K.1^17,K.1,-1*K.1^17,K.1^19,K.1^19,-1*K.1^5,-1*K.1,-1*K.1^11,K.1,-1*K.1,-1*K.1^17,K.1,-1*K.1^5,-1*K.1^5,K.1^17,-1*K.1^23,-1*K.1^5,-1*K.1^7,K.1^11,K.1^11,-1*K.1^7,-1*K.1^23,K.1^23,-1*K.1^13,-1*K.1^23,-1*K.1,-1*K.1^13,K.1^23,-1*K.1^19,K.1^7,K.1^5,K.1^13,K.1^17,K.1^5,K.1^5,K.1^19,-1*K.1^11,K.1^7,K.1^13,-1*K.1^13,K.1^17,K.1^7,-1*K.1^13,K.1^23,-1*K.1^17,-1*K.1^7,-1*K.1^11,K.1^13,K.1^23,K.1^17,-1*K.1^19,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,K.1^20,K.1^4,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^20,K.1^20,-1*K.1^20,K.1^4,K.1^20,K.1^21,-1*K.1^21,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^3,-1*K.1^21,-1*K.1^9,-1*K.1^15,K.1^15,K.1^15,K.1^21,K.1^21,K.1^3,K.1^9,K.1^3,K.1^9,K.1^9,-1*K.1^15,-1*K.1^21,K.1^3,-1*K.1^3,K.1^21,K.1^15,-1*K.1^9,-1*K.1^15,K.1^9,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,-1*K.1^3,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^14,K.1^22,K.1^14,K.1^14,K.1^22,-1*K.1^14,-1*K.1^22,K.1^22,K.1^14,K.1^22,-1*K.1^10,K.1^10,K.1^2,-1*K.1^22,K.1^2,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^22,K.1^2,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^14,K.1^10,-1*K.1^2,K.1^10,K.1,K.1^17,K.1^13,K.1^17,-1*K.1^5,-1*K.1,K.1^5,K.1,-1*K.1^17,-1*K.1^7,-1*K.1^11,K.1^23,K.1^11,-1*K.1^19,-1*K.1^11,-1*K.1^19,-1*K.1^17,-1*K.1^17,K.1^7,K.1^11,-1*K.1,-1*K.1^11,K.1^11,-1*K.1^19,-1*K.1^11,K.1^7,K.1^7,K.1^19,K.1^13,K.1^7,-1*K.1^5,K.1,K.1,-1*K.1^5,K.1^13,-1*K.1^13,-1*K.1^23,K.1^13,K.1^11,-1*K.1^23,-1*K.1^13,K.1^17,K.1^5,-1*K.1^7,K.1^23,K.1^19,-1*K.1^7,-1*K.1^7,-1*K.1^17,-1*K.1,K.1^5,K.1^23,-1*K.1^23,K.1^19,K.1^5,-1*K.1^23,-1*K.1^13,-1*K.1^19,-1*K.1^5,-1*K.1,K.1^23,-1*K.1^13,K.1^19,K.1^17,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,K.1^20,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^20,K.1^20,K.1^4,K.1^4,K.1^20,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,-1*K.1^3,K.1^3,K.1^21,K.1^15,K.1^9,K.1^21,K.1^3,K.1^15,K.1^9,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^21,-1*K.1^15,-1*K.1^21,-1*K.1^15,-1*K.1^15,K.1^9,K.1^3,-1*K.1^21,K.1^21,-1*K.1^3,-1*K.1^9,K.1^15,K.1^9,-1*K.1^15,K.1^3,-1*K.1^21,-1*K.1^9,K.1^15,K.1^21,K.1^22,-1*K.1^14,K.1^14,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^22,K.1^2,-1*K.1^22,-1*K.1^22,K.1^22,K.1^14,K.1^22,K.1^14,K.1^2,-1*K.1^22,-1*K.1^10,K.1^2,K.1^10,K.1^10,-1*K.1^14,K.1^22,-1*K.1^14,-1*K.1^23,-1*K.1^7,-1*K.1^11,-1*K.1^7,K.1^19,K.1^23,-1*K.1^19,-1*K.1^23,K.1^7,K.1^17,K.1^13,-1*K.1,-1*K.1^13,K.1^5,K.1^13,K.1^5,K.1^7,K.1^7,-1*K.1^17,-1*K.1^13,K.1^23,K.1^13,-1*K.1^13,K.1^5,K.1^13,-1*K.1^17,-1*K.1^17,-1*K.1^5,-1*K.1^11,-1*K.1^17,K.1^19,-1*K.1^23,-1*K.1^23,K.1^19,-1*K.1^11,K.1^11,K.1,-1*K.1^11,-1*K.1^13,K.1,K.1^11,-1*K.1^7,-1*K.1^19,K.1^17,-1*K.1,-1*K.1^5,K.1^17,K.1^17,K.1^7,K.1^23,-1*K.1^19,-1*K.1,K.1,-1*K.1^5,-1*K.1^19,K.1,K.1^11,K.1^5,K.1^19,K.1^23,-1*K.1,K.1^11,-1*K.1^5,-1*K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,-1*K.1^8,K.1^16,1,1,K.1^16,-1*K.1^8,-1,-1,-1,-1,-1*K.1^8,K.1^16,K.1^16,-1*K.1^8,K.1^12,-1*K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,K.1^8,-1*K.1^16,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,-1*K.1^6,K.1^18,K.1^18,-1*K.1^6,K.1^6,-1*K.1^18,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,-1*K.1^4,-1*K.1^4,K.1^4,K.1^20,K.1^4,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^20,K.1^20,-1*K.1^20,K.1^4,K.1^20,-1*K.1^21,K.1^21,K.1^3,K.1^9,K.1^15,K.1^3,K.1^21,K.1^9,K.1^15,-1*K.1^15,-1*K.1^15,-1*K.1^21,-1*K.1^21,-1*K.1^3,-1*K.1^9,-1*K.1^3,-1*K.1^9,-1*K.1^9,K.1^15,K.1^21,-1*K.1^3,K.1^3,-1*K.1^21,-1*K.1^15,K.1^9,K.1^15,-1*K.1^9,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,K.1^3,-1*K.1^2,K.1^10,-1*K.1^10,-1*K.1^14,K.1^22,K.1^14,K.1^14,K.1^22,-1*K.1^14,-1*K.1^22,K.1^22,K.1^14,K.1^22,-1*K.1^10,K.1^10,K.1^2,-1*K.1^22,K.1^2,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^22,K.1^2,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^14,K.1^10,-1*K.1^2,K.1^10,-1*K.1,-1*K.1^17,-1*K.1^13,-1*K.1^17,K.1^5,K.1,-1*K.1^5,-1*K.1,K.1^17,K.1^7,K.1^11,-1*K.1^23,-1*K.1^11,K.1^19,K.1^11,K.1^19,K.1^17,K.1^17,-1*K.1^7,-1*K.1^11,K.1,K.1^11,-1*K.1^11,K.1^19,K.1^11,-1*K.1^7,-1*K.1^7,-1*K.1^19,-1*K.1^13,-1*K.1^7,K.1^5,-1*K.1,-1*K.1,K.1^5,-1*K.1^13,K.1^13,K.1^23,-1*K.1^13,-1*K.1^11,K.1^23,K.1^13,-1*K.1^17,-1*K.1^5,K.1^7,-1*K.1^23,-1*K.1^19,K.1^7,K.1^7,K.1^17,K.1,-1*K.1^5,-1*K.1^23,K.1^23,-1*K.1^19,-1*K.1^5,K.1^23,K.1^13,K.1^19,K.1^5,K.1,-1*K.1^23,K.1^13,-1*K.1^19,-1*K.1^17,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(48: Sparse := true); S := [ K |1,1,K.1^16,-1*K.1^8,1,1,-1*K.1^8,K.1^16,-1,-1,-1,-1,K.1^16,-1*K.1^8,-1*K.1^8,K.1^16,-1*K.1^12,K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,K.1^12,-1*K.1^12,-1*K.1^16,K.1^8,K.1^8,-1*K.1^16,-1*K.1^16,K.1^8,-1*K.1^16,K.1^8,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^18,K.1^6,K.1^18,-1*K.1^6,-1*K.1^6,K.1^18,-1*K.1^18,K.1^6,-1*K.1^6,K.1^18,K.1^6,-1*K.1^18,K.1^20,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,-1*K.1^20,K.1^20,K.1^4,K.1^4,K.1^20,K.1^4,-1*K.1^4,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^4,K.1^3,-1*K.1^3,-1*K.1^21,-1*K.1^15,-1*K.1^9,-1*K.1^21,-1*K.1^3,-1*K.1^15,-1*K.1^9,K.1^9,K.1^9,K.1^3,K.1^3,K.1^21,K.1^15,K.1^21,K.1^15,K.1^15,-1*K.1^9,-1*K.1^3,K.1^21,-1*K.1^21,K.1^3,K.1^9,-1*K.1^15,-1*K.1^9,K.1^15,-1*K.1^3,K.1^21,K.1^9,-1*K.1^15,-1*K.1^21,K.1^22,-1*K.1^14,K.1^14,K.1^10,-1*K.1^2,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^2,K.1^14,-1*K.1^14,-1*K.1^22,K.1^2,-1*K.1^22,-1*K.1^22,K.1^22,K.1^14,K.1^22,K.1^14,K.1^2,-1*K.1^22,-1*K.1^10,K.1^2,K.1^10,K.1^10,-1*K.1^14,K.1^22,-1*K.1^14,K.1^23,K.1^7,K.1^11,K.1^7,-1*K.1^19,-1*K.1^23,K.1^19,K.1^23,-1*K.1^7,-1*K.1^17,-1*K.1^13,K.1,K.1^13,-1*K.1^5,-1*K.1^13,-1*K.1^5,-1*K.1^7,-1*K.1^7,K.1^17,K.1^13,-1*K.1^23,-1*K.1^13,K.1^13,-1*K.1^5,-1*K.1^13,K.1^17,K.1^17,K.1^5,K.1^11,K.1^17,-1*K.1^19,K.1^23,K.1^23,-1*K.1^19,K.1^11,-1*K.1^11,-1*K.1,K.1^11,K.1^13,-1*K.1,-1*K.1^11,K.1^7,K.1^19,-1*K.1^17,K.1,K.1^5,-1*K.1^17,-1*K.1^17,-1*K.1^7,-1*K.1^23,K.1^19,K.1,-1*K.1,K.1^5,K.1^19,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1^19,-1*K.1^23,K.1,-1*K.1^11,K.1^5,K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^28,-1*K.1^4,K.1^28,K.1^20,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^14,-1*K.1^18,-1*K.1^22,K.1^10,-1*K.1^30,K.1^2,K.1^6,-1*K.1^26,K.1^26,-1*K.1^6,K.1^30,-1*K.1^2,-1*K.1^10,K.1^22,K.1^18,K.1^14,-1*K.1^12,-1*K.1^28,-1*K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,K.1^20,K.1^28,K.1^4,-1*K.1^20,K.1^17,-1*K.1^9,K.1^15,K.1^13,-1*K.1^11,-1*K.1^15,K.1^9,-1*K.1^13,K.1^11,-1*K.1^3,K.1^3,K.1,-1*K.1,K.1^7,-1*K.1^5,-1*K.1^7,K.1^5,-1*K.1^21,K.1^27,K.1^25,-1*K.1^23,K.1^31,-1*K.1^17,-1*K.1^19,K.1^29,-1*K.1^27,K.1^21,-1*K.1^25,K.1^23,K.1^19,-1*K.1^29,-1*K.1^31,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^14,K.1^30,-1*K.1^6,K.1^22,K.1^14,-1*K.1^30,-1*K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^10,K.1^18,K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^26,K.1^2,-1*K.1^26,-1*K.1^18,K.1^26,K.1^22,K.1^26,K.1^6,K.1^6,K.1^14,K.1^30,-1*K.1^2,K.1^18,-1*K.1^18,-1*K.1^29,K.1^13,K.1^25,K.1^29,-1*K.1^25,K.1^21,-1*K.1^17,-1*K.1^13,K.1^5,K.1^19,K.1^7,-1*K.1^27,K.1^15,-1*K.1^15,-1*K.1^7,-1*K.1^31,K.1^21,-1*K.1^5,-1*K.1^11,-1*K.1^15,K.1^5,-1*K.1^23,K.1^31,K.1^15,K.1^23,K.1^27,-1*K.1^27,K.1^7,-1*K.1^25,K.1^11,K.1^25,K.1^13,K.1^29,-1*K.1^9,K.1^9,-1*K.1^17,-1*K.1^3,-1*K.1^9,-1*K.1^31,-1*K.1^19,-1*K.1,-1*K.1^29,-1*K.1,-1*K.1^19,K.1^11,-1*K.1^7,K.1^3,-1*K.1^3,-1*K.1^21,-1*K.1^21,K.1^17,K.1^27,K.1^3,-1*K.1^23,K.1,K.1^19,K.1^17,K.1^31,K.1^9,-1*K.1^5,-1*K.1^11,K.1,K.1^23,-1*K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^20,K.1^12,-1*K.1^28,K.1^4,K.1^28,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^18,K.1^14,K.1^10,-1*K.1^22,K.1^2,-1*K.1^30,-1*K.1^26,K.1^6,-1*K.1^6,K.1^26,-1*K.1^2,K.1^30,K.1^22,-1*K.1^10,-1*K.1^14,-1*K.1^18,K.1^20,K.1^4,K.1^12,-1*K.1^28,K.1^28,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^28,K.1^12,-1*K.1^15,K.1^23,-1*K.1^17,-1*K.1^19,K.1^21,K.1^17,-1*K.1^23,K.1^19,-1*K.1^21,K.1^29,-1*K.1^29,-1*K.1^31,K.1^31,-1*K.1^25,K.1^27,K.1^25,-1*K.1^27,K.1^11,-1*K.1^5,-1*K.1^7,K.1^9,-1*K.1,K.1^15,K.1^13,-1*K.1^3,K.1^5,-1*K.1^11,K.1^7,-1*K.1^9,-1*K.1^13,K.1^3,K.1,K.1^30,-1*K.1^30,K.1^22,K.1^18,-1*K.1^2,K.1^26,-1*K.1^10,-1*K.1^18,K.1^2,K.1^10,K.1^18,K.1^10,K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^22,K.1^26,K.1^22,K.1^6,-1*K.1^30,K.1^6,K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^6,-1*K.1^26,-1*K.1^26,-1*K.1^18,-1*K.1^2,K.1^30,-1*K.1^14,K.1^14,K.1^3,-1*K.1^19,-1*K.1^7,-1*K.1^3,K.1^7,-1*K.1^11,K.1^15,K.1^19,-1*K.1^27,-1*K.1^13,-1*K.1^25,K.1^5,-1*K.1^17,K.1^17,K.1^25,K.1,-1*K.1^11,K.1^27,K.1^21,K.1^17,-1*K.1^27,K.1^9,-1*K.1,-1*K.1^17,-1*K.1^9,-1*K.1^5,K.1^5,-1*K.1^25,K.1^7,-1*K.1^21,-1*K.1^7,-1*K.1^19,-1*K.1^3,K.1^23,-1*K.1^23,K.1^15,K.1^29,K.1^23,K.1,K.1^13,K.1^31,K.1^3,K.1^31,K.1^13,-1*K.1^21,K.1^25,-1*K.1^29,K.1^29,K.1^11,K.1^11,-1*K.1^15,-1*K.1^5,-1*K.1^29,K.1^9,-1*K.1^31,-1*K.1^13,-1*K.1^15,-1*K.1,-1*K.1^23,K.1^27,K.1^21,-1*K.1^31,-1*K.1^9,K.1^19,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^28,-1*K.1^4,K.1^28,K.1^20,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^14,-1*K.1^18,-1*K.1^22,K.1^10,-1*K.1^30,K.1^2,K.1^6,-1*K.1^26,K.1^26,-1*K.1^6,K.1^30,-1*K.1^2,-1*K.1^10,K.1^22,K.1^18,K.1^14,-1*K.1^12,-1*K.1^28,-1*K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,K.1^20,K.1^28,K.1^4,-1*K.1^20,-1*K.1^17,K.1^9,-1*K.1^15,-1*K.1^13,K.1^11,K.1^15,-1*K.1^9,K.1^13,-1*K.1^11,K.1^3,-1*K.1^3,-1*K.1,K.1,-1*K.1^7,K.1^5,K.1^7,-1*K.1^5,K.1^21,-1*K.1^27,-1*K.1^25,K.1^23,-1*K.1^31,K.1^17,K.1^19,-1*K.1^29,K.1^27,-1*K.1^21,K.1^25,-1*K.1^23,-1*K.1^19,K.1^29,K.1^31,-1*K.1^2,K.1^2,-1*K.1^10,-1*K.1^14,K.1^30,-1*K.1^6,K.1^22,K.1^14,-1*K.1^30,-1*K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^10,K.1^18,K.1^10,-1*K.1^6,-1*K.1^10,-1*K.1^26,K.1^2,-1*K.1^26,-1*K.1^18,K.1^26,K.1^22,K.1^26,K.1^6,K.1^6,K.1^14,K.1^30,-1*K.1^2,K.1^18,-1*K.1^18,K.1^29,-1*K.1^13,-1*K.1^25,-1*K.1^29,K.1^25,-1*K.1^21,K.1^17,K.1^13,-1*K.1^5,-1*K.1^19,-1*K.1^7,K.1^27,-1*K.1^15,K.1^15,K.1^7,K.1^31,-1*K.1^21,K.1^5,K.1^11,K.1^15,-1*K.1^5,K.1^23,-1*K.1^31,-1*K.1^15,-1*K.1^23,-1*K.1^27,K.1^27,-1*K.1^7,K.1^25,-1*K.1^11,-1*K.1^25,-1*K.1^13,-1*K.1^29,K.1^9,-1*K.1^9,K.1^17,K.1^3,K.1^9,K.1^31,K.1^19,K.1,K.1^29,K.1,K.1^19,-1*K.1^11,K.1^7,-1*K.1^3,K.1^3,K.1^21,K.1^21,-1*K.1^17,-1*K.1^27,-1*K.1^3,K.1^23,-1*K.1,-1*K.1^19,-1*K.1^17,-1*K.1^31,-1*K.1^9,K.1^5,K.1^11,-1*K.1,-1*K.1^23,K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^20,K.1^12,-1*K.1^28,K.1^4,K.1^28,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^18,K.1^14,K.1^10,-1*K.1^22,K.1^2,-1*K.1^30,-1*K.1^26,K.1^6,-1*K.1^6,K.1^26,-1*K.1^2,K.1^30,K.1^22,-1*K.1^10,-1*K.1^14,-1*K.1^18,K.1^20,K.1^4,K.1^12,-1*K.1^28,K.1^28,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^28,K.1^12,K.1^15,-1*K.1^23,K.1^17,K.1^19,-1*K.1^21,-1*K.1^17,K.1^23,-1*K.1^19,K.1^21,-1*K.1^29,K.1^29,K.1^31,-1*K.1^31,K.1^25,-1*K.1^27,-1*K.1^25,K.1^27,-1*K.1^11,K.1^5,K.1^7,-1*K.1^9,K.1,-1*K.1^15,-1*K.1^13,K.1^3,-1*K.1^5,K.1^11,-1*K.1^7,K.1^9,K.1^13,-1*K.1^3,-1*K.1,K.1^30,-1*K.1^30,K.1^22,K.1^18,-1*K.1^2,K.1^26,-1*K.1^10,-1*K.1^18,K.1^2,K.1^10,K.1^18,K.1^10,K.1^2,-1*K.1^22,-1*K.1^14,-1*K.1^22,K.1^26,K.1^22,K.1^6,-1*K.1^30,K.1^6,K.1^14,-1*K.1^6,-1*K.1^10,-1*K.1^6,-1*K.1^26,-1*K.1^26,-1*K.1^18,-1*K.1^2,K.1^30,-1*K.1^14,K.1^14,-1*K.1^3,K.1^19,K.1^7,K.1^3,-1*K.1^7,K.1^11,-1*K.1^15,-1*K.1^19,K.1^27,K.1^13,K.1^25,-1*K.1^5,K.1^17,-1*K.1^17,-1*K.1^25,-1*K.1,K.1^11,-1*K.1^27,-1*K.1^21,-1*K.1^17,K.1^27,-1*K.1^9,K.1,K.1^17,K.1^9,K.1^5,-1*K.1^5,K.1^25,-1*K.1^7,K.1^21,K.1^7,K.1^19,K.1^3,-1*K.1^23,K.1^23,-1*K.1^15,-1*K.1^29,-1*K.1^23,-1*K.1,-1*K.1^13,-1*K.1^31,-1*K.1^3,-1*K.1^31,-1*K.1^13,K.1^21,-1*K.1^25,K.1^29,-1*K.1^29,-1*K.1^11,-1*K.1^11,K.1^15,K.1^5,K.1^29,-1*K.1^9,K.1^31,K.1^13,K.1^15,K.1,K.1^23,-1*K.1^27,-1*K.1^21,K.1^31,K.1^9,-1*K.1^19,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^28,-1*K.1^4,K.1^28,K.1^20,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,K.1^14,K.1^18,K.1^22,-1*K.1^10,K.1^30,-1*K.1^2,-1*K.1^6,K.1^26,-1*K.1^26,K.1^6,-1*K.1^30,K.1^2,K.1^10,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^12,-1*K.1^28,-1*K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,K.1^20,K.1^28,K.1^4,-1*K.1^20,-1*K.1,-1*K.1^25,-1*K.1^31,K.1^29,K.1^27,K.1^31,K.1^25,-1*K.1^29,-1*K.1^27,K.1^19,-1*K.1^19,K.1^17,-1*K.1^17,-1*K.1^23,-1*K.1^21,K.1^23,K.1^21,K.1^5,K.1^11,-1*K.1^9,-1*K.1^7,K.1^15,K.1,-1*K.1^3,-1*K.1^13,-1*K.1^11,-1*K.1^5,K.1^9,K.1^7,K.1^3,K.1^13,-1*K.1^15,K.1^2,-1*K.1^2,K.1^10,K.1^14,-1*K.1^30,K.1^6,-1*K.1^22,-1*K.1^14,K.1^30,K.1^22,K.1^14,K.1^22,K.1^30,-1*K.1^10,-1*K.1^18,-1*K.1^10,K.1^6,K.1^10,K.1^26,-1*K.1^2,K.1^26,K.1^18,-1*K.1^26,-1*K.1^22,-1*K.1^26,-1*K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^30,K.1^2,-1*K.1^18,K.1^18,K.1^13,K.1^29,-1*K.1^9,-1*K.1^13,K.1^9,-1*K.1^5,K.1,-1*K.1^29,K.1^21,K.1^3,-1*K.1^23,-1*K.1^11,-1*K.1^31,K.1^31,K.1^23,-1*K.1^15,-1*K.1^5,-1*K.1^21,K.1^27,K.1^31,K.1^21,-1*K.1^7,K.1^15,-1*K.1^31,K.1^7,K.1^11,-1*K.1^11,-1*K.1^23,K.1^9,-1*K.1^27,-1*K.1^9,K.1^29,-1*K.1^13,-1*K.1^25,K.1^25,K.1,K.1^19,-1*K.1^25,-1*K.1^15,-1*K.1^3,-1*K.1^17,K.1^13,-1*K.1^17,-1*K.1^3,-1*K.1^27,K.1^23,-1*K.1^19,K.1^19,K.1^5,K.1^5,-1*K.1,K.1^11,-1*K.1^19,-1*K.1^7,K.1^17,K.1^3,-1*K.1,K.1^15,K.1^25,-1*K.1^21,K.1^27,K.1^17,K.1^7,-1*K.1^29,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^20,K.1^12,-1*K.1^28,K.1^4,K.1^28,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^10,K.1^22,-1*K.1^2,K.1^30,K.1^26,-1*K.1^6,K.1^6,-1*K.1^26,K.1^2,-1*K.1^30,-1*K.1^22,K.1^10,K.1^14,K.1^18,K.1^20,K.1^4,K.1^12,-1*K.1^28,K.1^28,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^28,K.1^12,K.1^31,K.1^7,K.1,-1*K.1^3,-1*K.1^5,-1*K.1,-1*K.1^7,K.1^3,K.1^5,-1*K.1^13,K.1^13,-1*K.1^15,K.1^15,K.1^9,K.1^11,-1*K.1^9,-1*K.1^11,-1*K.1^27,-1*K.1^21,K.1^23,K.1^25,-1*K.1^17,-1*K.1^31,K.1^29,K.1^19,K.1^21,K.1^27,-1*K.1^23,-1*K.1^25,-1*K.1^29,-1*K.1^19,K.1^17,-1*K.1^30,K.1^30,-1*K.1^22,-1*K.1^18,K.1^2,-1*K.1^26,K.1^10,K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^22,K.1^14,K.1^22,-1*K.1^26,-1*K.1^22,-1*K.1^6,K.1^30,-1*K.1^6,-1*K.1^14,K.1^6,K.1^10,K.1^6,K.1^26,K.1^26,K.1^18,K.1^2,-1*K.1^30,K.1^14,-1*K.1^14,-1*K.1^19,-1*K.1^3,K.1^23,K.1^19,-1*K.1^23,K.1^27,-1*K.1^31,K.1^3,-1*K.1^11,-1*K.1^29,K.1^9,K.1^21,K.1,-1*K.1,-1*K.1^9,K.1^17,K.1^27,K.1^11,-1*K.1^5,-1*K.1,-1*K.1^11,K.1^25,-1*K.1^17,K.1,-1*K.1^25,-1*K.1^21,K.1^21,K.1^9,-1*K.1^23,K.1^5,K.1^23,-1*K.1^3,K.1^19,K.1^7,-1*K.1^7,-1*K.1^31,-1*K.1^13,K.1^7,K.1^17,K.1^29,K.1^15,-1*K.1^19,K.1^15,K.1^29,K.1^5,-1*K.1^9,K.1^13,-1*K.1^13,-1*K.1^27,-1*K.1^27,K.1^31,-1*K.1^21,K.1^13,K.1^25,-1*K.1^15,-1*K.1^29,K.1^31,-1*K.1^17,-1*K.1^7,K.1^11,-1*K.1^5,-1*K.1^15,-1*K.1^25,K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^28,-1*K.1^4,K.1^28,K.1^20,K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,K.1^14,K.1^18,K.1^22,-1*K.1^10,K.1^30,-1*K.1^2,-1*K.1^6,K.1^26,-1*K.1^26,K.1^6,-1*K.1^30,K.1^2,K.1^10,-1*K.1^22,-1*K.1^18,-1*K.1^14,-1*K.1^12,-1*K.1^28,-1*K.1^20,K.1^4,-1*K.1^4,K.1^20,K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^4,K.1^20,K.1^28,K.1^4,-1*K.1^20,K.1,K.1^25,K.1^31,-1*K.1^29,-1*K.1^27,-1*K.1^31,-1*K.1^25,K.1^29,K.1^27,-1*K.1^19,K.1^19,-1*K.1^17,K.1^17,K.1^23,K.1^21,-1*K.1^23,-1*K.1^21,-1*K.1^5,-1*K.1^11,K.1^9,K.1^7,-1*K.1^15,-1*K.1,K.1^3,K.1^13,K.1^11,K.1^5,-1*K.1^9,-1*K.1^7,-1*K.1^3,-1*K.1^13,K.1^15,K.1^2,-1*K.1^2,K.1^10,K.1^14,-1*K.1^30,K.1^6,-1*K.1^22,-1*K.1^14,K.1^30,K.1^22,K.1^14,K.1^22,K.1^30,-1*K.1^10,-1*K.1^18,-1*K.1^10,K.1^6,K.1^10,K.1^26,-1*K.1^2,K.1^26,K.1^18,-1*K.1^26,-1*K.1^22,-1*K.1^26,-1*K.1^6,-1*K.1^6,-1*K.1^14,-1*K.1^30,K.1^2,-1*K.1^18,K.1^18,-1*K.1^13,-1*K.1^29,K.1^9,K.1^13,-1*K.1^9,K.1^5,-1*K.1,K.1^29,-1*K.1^21,-1*K.1^3,K.1^23,K.1^11,K.1^31,-1*K.1^31,-1*K.1^23,K.1^15,K.1^5,K.1^21,-1*K.1^27,-1*K.1^31,-1*K.1^21,K.1^7,-1*K.1^15,K.1^31,-1*K.1^7,-1*K.1^11,K.1^11,K.1^23,-1*K.1^9,K.1^27,K.1^9,-1*K.1^29,K.1^13,K.1^25,-1*K.1^25,-1*K.1,-1*K.1^19,K.1^25,K.1^15,K.1^3,K.1^17,-1*K.1^13,K.1^17,K.1^3,K.1^27,-1*K.1^23,K.1^19,-1*K.1^19,-1*K.1^5,-1*K.1^5,K.1,-1*K.1^11,K.1^19,K.1^7,-1*K.1^17,-1*K.1^3,K.1,-1*K.1^15,-1*K.1^25,K.1^21,-1*K.1^27,-1*K.1^17,-1*K.1^7,K.1^29,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^20,K.1^12,-1*K.1^28,K.1^4,K.1^28,-1*K.1^4,-1*K.1^12,-1*K.1^20,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^18,-1*K.1^14,-1*K.1^10,K.1^22,-1*K.1^2,K.1^30,K.1^26,-1*K.1^6,K.1^6,-1*K.1^26,K.1^2,-1*K.1^30,-1*K.1^22,K.1^10,K.1^14,K.1^18,K.1^20,K.1^4,K.1^12,-1*K.1^28,K.1^28,-1*K.1^12,-1*K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^28,-1*K.1^12,-1*K.1^4,-1*K.1^28,K.1^12,-1*K.1^31,-1*K.1^7,-1*K.1,K.1^3,K.1^5,K.1,K.1^7,-1*K.1^3,-1*K.1^5,K.1^13,-1*K.1^13,K.1^15,-1*K.1^15,-1*K.1^9,-1*K.1^11,K.1^9,K.1^11,K.1^27,K.1^21,-1*K.1^23,-1*K.1^25,K.1^17,K.1^31,-1*K.1^29,-1*K.1^19,-1*K.1^21,-1*K.1^27,K.1^23,K.1^25,K.1^29,K.1^19,-1*K.1^17,-1*K.1^30,K.1^30,-1*K.1^22,-1*K.1^18,K.1^2,-1*K.1^26,K.1^10,K.1^18,-1*K.1^2,-1*K.1^10,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^22,K.1^14,K.1^22,-1*K.1^26,-1*K.1^22,-1*K.1^6,K.1^30,-1*K.1^6,-1*K.1^14,K.1^6,K.1^10,K.1^6,K.1^26,K.1^26,K.1^18,K.1^2,-1*K.1^30,K.1^14,-1*K.1^14,K.1^19,K.1^3,-1*K.1^23,-1*K.1^19,K.1^23,-1*K.1^27,K.1^31,-1*K.1^3,K.1^11,K.1^29,-1*K.1^9,-1*K.1^21,-1*K.1,K.1,K.1^9,-1*K.1^17,-1*K.1^27,-1*K.1^11,K.1^5,K.1,K.1^11,-1*K.1^25,K.1^17,-1*K.1,K.1^25,K.1^21,-1*K.1^21,-1*K.1^9,K.1^23,-1*K.1^5,-1*K.1^23,K.1^3,-1*K.1^19,-1*K.1^7,K.1^7,K.1^31,K.1^13,-1*K.1^7,-1*K.1^17,-1*K.1^29,-1*K.1^15,K.1^19,-1*K.1^15,-1*K.1^29,-1*K.1^5,K.1^9,-1*K.1^13,K.1^13,K.1^27,K.1^27,-1*K.1^31,K.1^21,-1*K.1^13,-1*K.1^25,K.1^15,K.1^29,-1*K.1^31,K.1^17,K.1^7,-1*K.1^11,K.1^5,K.1^15,K.1^25,-1*K.1^3,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^20,-1*K.1^4,K.1^28,K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,K.1^30,K.1^2,-1*K.1^6,K.1^26,-1*K.1^14,K.1^18,-1*K.1^22,K.1^10,-1*K.1^10,K.1^22,K.1^14,-1*K.1^18,-1*K.1^26,K.1^6,-1*K.1^2,-1*K.1^30,K.1^12,K.1^28,K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,K.1^20,K.1^25,-1*K.1^17,K.1^7,-1*K.1^21,K.1^3,-1*K.1^7,K.1^17,K.1^21,-1*K.1^3,-1*K.1^27,K.1^27,K.1^9,-1*K.1^9,-1*K.1^31,K.1^13,K.1^31,-1*K.1^13,K.1^29,-1*K.1^19,-1*K.1,-1*K.1^15,K.1^23,-1*K.1^25,K.1^11,K.1^5,K.1^19,-1*K.1^29,K.1,K.1^15,-1*K.1^11,-1*K.1^5,-1*K.1^23,-1*K.1^18,K.1^18,-1*K.1^26,K.1^30,K.1^14,K.1^22,K.1^6,-1*K.1^30,-1*K.1^14,-1*K.1^6,K.1^30,-1*K.1^6,-1*K.1^14,K.1^26,-1*K.1^2,K.1^26,K.1^22,-1*K.1^26,K.1^10,K.1^18,K.1^10,K.1^2,-1*K.1^10,K.1^6,-1*K.1^10,-1*K.1^22,-1*K.1^22,-1*K.1^30,K.1^14,-1*K.1^18,-1*K.1^2,K.1^2,-1*K.1^5,-1*K.1^21,-1*K.1,K.1^5,K.1,-1*K.1^29,-1*K.1^25,K.1^21,-1*K.1^13,-1*K.1^11,-1*K.1^31,K.1^19,K.1^7,-1*K.1^7,K.1^31,-1*K.1^23,-1*K.1^29,K.1^13,K.1^3,-1*K.1^7,-1*K.1^13,-1*K.1^15,K.1^23,K.1^7,K.1^15,-1*K.1^19,K.1^19,-1*K.1^31,K.1,-1*K.1^3,-1*K.1,-1*K.1^21,K.1^5,-1*K.1^17,K.1^17,-1*K.1^25,-1*K.1^27,-1*K.1^17,-1*K.1^23,K.1^11,-1*K.1^9,-1*K.1^5,-1*K.1^9,K.1^11,-1*K.1^3,K.1^31,K.1^27,-1*K.1^27,K.1^29,K.1^29,K.1^25,-1*K.1^19,K.1^27,-1*K.1^15,K.1^9,-1*K.1^11,K.1^25,K.1^23,K.1^17,K.1^13,K.1^3,K.1^9,K.1^15,K.1^21,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^4,-1*K.1^28,K.1^4,K.1^12,K.1^20,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^2,-1*K.1^30,K.1^26,-1*K.1^6,K.1^18,-1*K.1^14,K.1^10,-1*K.1^22,K.1^22,-1*K.1^10,-1*K.1^18,K.1^14,K.1^6,-1*K.1^26,K.1^30,K.1^2,-1*K.1^20,-1*K.1^4,-1*K.1^12,K.1^28,-1*K.1^28,K.1^12,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^12,K.1^4,K.1^28,-1*K.1^12,-1*K.1^7,K.1^15,-1*K.1^25,K.1^11,-1*K.1^29,K.1^25,-1*K.1^15,-1*K.1^11,K.1^29,K.1^5,-1*K.1^5,-1*K.1^23,K.1^23,K.1,-1*K.1^19,-1*K.1,K.1^19,-1*K.1^3,K.1^13,K.1^31,K.1^17,-1*K.1^9,K.1^7,-1*K.1^21,-1*K.1^27,-1*K.1^13,K.1^3,-1*K.1^31,-1*K.1^17,K.1^21,K.1^27,K.1^9,K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^10,-1*K.1^26,K.1^2,K.1^18,K.1^26,-1*K.1^2,K.1^26,K.1^18,-1*K.1^6,K.1^30,-1*K.1^6,-1*K.1^10,K.1^6,-1*K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^22,-1*K.1^26,K.1^22,K.1^10,K.1^10,K.1^2,-1*K.1^18,K.1^14,K.1^30,-1*K.1^30,K.1^27,K.1^11,K.1^31,-1*K.1^27,-1*K.1^31,K.1^3,K.1^7,-1*K.1^11,K.1^19,K.1^21,K.1,-1*K.1^13,-1*K.1^25,K.1^25,-1*K.1,K.1^9,K.1^3,-1*K.1^19,-1*K.1^29,K.1^25,K.1^19,K.1^17,-1*K.1^9,-1*K.1^25,-1*K.1^17,K.1^13,-1*K.1^13,K.1,-1*K.1^31,K.1^29,K.1^31,K.1^11,-1*K.1^27,K.1^15,-1*K.1^15,K.1^7,K.1^5,K.1^15,K.1^9,-1*K.1^21,K.1^23,K.1^27,K.1^23,-1*K.1^21,K.1^29,-1*K.1,-1*K.1^5,K.1^5,-1*K.1^3,-1*K.1^3,-1*K.1^7,K.1^13,-1*K.1^5,K.1^17,-1*K.1^23,K.1^21,-1*K.1^7,-1*K.1^9,-1*K.1^15,-1*K.1^19,-1*K.1^29,-1*K.1^23,-1*K.1^17,-1*K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^20,-1*K.1^4,K.1^28,K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,K.1^30,K.1^2,-1*K.1^6,K.1^26,-1*K.1^14,K.1^18,-1*K.1^22,K.1^10,-1*K.1^10,K.1^22,K.1^14,-1*K.1^18,-1*K.1^26,K.1^6,-1*K.1^2,-1*K.1^30,K.1^12,K.1^28,K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,K.1^20,-1*K.1^25,K.1^17,-1*K.1^7,K.1^21,-1*K.1^3,K.1^7,-1*K.1^17,-1*K.1^21,K.1^3,K.1^27,-1*K.1^27,-1*K.1^9,K.1^9,K.1^31,-1*K.1^13,-1*K.1^31,K.1^13,-1*K.1^29,K.1^19,K.1,K.1^15,-1*K.1^23,K.1^25,-1*K.1^11,-1*K.1^5,-1*K.1^19,K.1^29,-1*K.1,-1*K.1^15,K.1^11,K.1^5,K.1^23,-1*K.1^18,K.1^18,-1*K.1^26,K.1^30,K.1^14,K.1^22,K.1^6,-1*K.1^30,-1*K.1^14,-1*K.1^6,K.1^30,-1*K.1^6,-1*K.1^14,K.1^26,-1*K.1^2,K.1^26,K.1^22,-1*K.1^26,K.1^10,K.1^18,K.1^10,K.1^2,-1*K.1^10,K.1^6,-1*K.1^10,-1*K.1^22,-1*K.1^22,-1*K.1^30,K.1^14,-1*K.1^18,-1*K.1^2,K.1^2,K.1^5,K.1^21,K.1,-1*K.1^5,-1*K.1,K.1^29,K.1^25,-1*K.1^21,K.1^13,K.1^11,K.1^31,-1*K.1^19,-1*K.1^7,K.1^7,-1*K.1^31,K.1^23,K.1^29,-1*K.1^13,-1*K.1^3,K.1^7,K.1^13,K.1^15,-1*K.1^23,-1*K.1^7,-1*K.1^15,K.1^19,-1*K.1^19,K.1^31,-1*K.1,K.1^3,K.1,K.1^21,-1*K.1^5,K.1^17,-1*K.1^17,K.1^25,K.1^27,K.1^17,K.1^23,-1*K.1^11,K.1^9,K.1^5,K.1^9,-1*K.1^11,K.1^3,-1*K.1^31,-1*K.1^27,K.1^27,-1*K.1^29,-1*K.1^29,-1*K.1^25,K.1^19,-1*K.1^27,K.1^15,-1*K.1^9,K.1^11,-1*K.1^25,-1*K.1^23,-1*K.1^17,-1*K.1^13,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^21,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^4,-1*K.1^28,K.1^4,K.1^12,K.1^20,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^2,-1*K.1^30,K.1^26,-1*K.1^6,K.1^18,-1*K.1^14,K.1^10,-1*K.1^22,K.1^22,-1*K.1^10,-1*K.1^18,K.1^14,K.1^6,-1*K.1^26,K.1^30,K.1^2,-1*K.1^20,-1*K.1^4,-1*K.1^12,K.1^28,-1*K.1^28,K.1^12,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^12,K.1^4,K.1^28,-1*K.1^12,K.1^7,-1*K.1^15,K.1^25,-1*K.1^11,K.1^29,-1*K.1^25,K.1^15,K.1^11,-1*K.1^29,-1*K.1^5,K.1^5,K.1^23,-1*K.1^23,-1*K.1,K.1^19,K.1,-1*K.1^19,K.1^3,-1*K.1^13,-1*K.1^31,-1*K.1^17,K.1^9,-1*K.1^7,K.1^21,K.1^27,K.1^13,-1*K.1^3,K.1^31,K.1^17,-1*K.1^21,-1*K.1^27,-1*K.1^9,K.1^14,-1*K.1^14,K.1^6,-1*K.1^2,-1*K.1^18,-1*K.1^10,-1*K.1^26,K.1^2,K.1^18,K.1^26,-1*K.1^2,K.1^26,K.1^18,-1*K.1^6,K.1^30,-1*K.1^6,-1*K.1^10,K.1^6,-1*K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^30,K.1^22,-1*K.1^26,K.1^22,K.1^10,K.1^10,K.1^2,-1*K.1^18,K.1^14,K.1^30,-1*K.1^30,-1*K.1^27,-1*K.1^11,-1*K.1^31,K.1^27,K.1^31,-1*K.1^3,-1*K.1^7,K.1^11,-1*K.1^19,-1*K.1^21,-1*K.1,K.1^13,K.1^25,-1*K.1^25,K.1,-1*K.1^9,-1*K.1^3,K.1^19,K.1^29,-1*K.1^25,-1*K.1^19,-1*K.1^17,K.1^9,K.1^25,K.1^17,-1*K.1^13,K.1^13,-1*K.1,K.1^31,-1*K.1^29,-1*K.1^31,-1*K.1^11,K.1^27,-1*K.1^15,K.1^15,-1*K.1^7,-1*K.1^5,-1*K.1^15,-1*K.1^9,K.1^21,-1*K.1^23,-1*K.1^27,-1*K.1^23,K.1^21,-1*K.1^29,K.1,K.1^5,-1*K.1^5,K.1^3,K.1^3,K.1^7,-1*K.1^13,K.1^5,-1*K.1^17,K.1^23,-1*K.1^21,K.1^7,K.1^9,K.1^15,K.1^19,K.1^29,K.1^23,K.1^17,K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^20,-1*K.1^4,K.1^28,K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^30,-1*K.1^2,K.1^6,-1*K.1^26,K.1^14,-1*K.1^18,K.1^22,-1*K.1^10,K.1^10,-1*K.1^22,-1*K.1^14,K.1^18,K.1^26,-1*K.1^6,K.1^2,K.1^30,K.1^12,K.1^28,K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,K.1^20,-1*K.1^9,K.1,-1*K.1^23,K.1^5,-1*K.1^19,K.1^23,-1*K.1,-1*K.1^5,K.1^19,-1*K.1^11,K.1^11,K.1^25,-1*K.1^25,-1*K.1^15,K.1^29,K.1^15,-1*K.1^29,-1*K.1^13,-1*K.1^3,-1*K.1^17,K.1^31,K.1^7,K.1^9,-1*K.1^27,K.1^21,K.1^3,K.1^13,K.1^17,-1*K.1^31,K.1^27,-1*K.1^21,-1*K.1^7,K.1^18,-1*K.1^18,K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^30,K.1^14,K.1^6,-1*K.1^30,K.1^6,K.1^14,-1*K.1^26,K.1^2,-1*K.1^26,-1*K.1^22,K.1^26,-1*K.1^10,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^6,K.1^10,K.1^22,K.1^22,K.1^30,-1*K.1^14,K.1^18,K.1^2,-1*K.1^2,-1*K.1^21,K.1^5,-1*K.1^17,K.1^21,K.1^17,K.1^13,K.1^9,-1*K.1^5,-1*K.1^29,K.1^27,-1*K.1^15,K.1^3,-1*K.1^23,K.1^23,K.1^15,-1*K.1^7,K.1^13,K.1^29,-1*K.1^19,K.1^23,-1*K.1^29,K.1^31,K.1^7,-1*K.1^23,-1*K.1^31,-1*K.1^3,K.1^3,-1*K.1^15,K.1^17,K.1^19,-1*K.1^17,K.1^5,K.1^21,K.1,-1*K.1,K.1^9,-1*K.1^11,K.1,-1*K.1^7,-1*K.1^27,-1*K.1^25,-1*K.1^21,-1*K.1^25,-1*K.1^27,K.1^19,K.1^15,K.1^11,-1*K.1^11,-1*K.1^13,-1*K.1^13,-1*K.1^9,-1*K.1^3,K.1^11,K.1^31,K.1^25,K.1^27,-1*K.1^9,K.1^7,-1*K.1,K.1^29,-1*K.1^19,K.1^25,-1*K.1^31,-1*K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^4,-1*K.1^28,K.1^4,K.1^12,K.1^20,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^2,K.1^30,-1*K.1^26,K.1^6,-1*K.1^18,K.1^14,-1*K.1^10,K.1^22,-1*K.1^22,K.1^10,K.1^18,-1*K.1^14,-1*K.1^6,K.1^26,-1*K.1^30,-1*K.1^2,-1*K.1^20,-1*K.1^4,-1*K.1^12,K.1^28,-1*K.1^28,K.1^12,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^12,K.1^4,K.1^28,-1*K.1^12,K.1^23,-1*K.1^31,K.1^9,-1*K.1^27,K.1^13,-1*K.1^9,K.1^31,K.1^27,-1*K.1^13,K.1^21,-1*K.1^21,-1*K.1^7,K.1^7,K.1^17,-1*K.1^3,-1*K.1^17,K.1^3,K.1^19,K.1^29,K.1^15,-1*K.1,-1*K.1^25,-1*K.1^23,K.1^5,-1*K.1^11,-1*K.1^29,-1*K.1^19,-1*K.1^15,K.1,-1*K.1^5,K.1^11,K.1^25,-1*K.1^14,K.1^14,-1*K.1^6,K.1^2,K.1^18,K.1^10,K.1^26,-1*K.1^2,-1*K.1^18,-1*K.1^26,K.1^2,-1*K.1^26,-1*K.1^18,K.1^6,-1*K.1^30,K.1^6,K.1^10,-1*K.1^6,K.1^22,K.1^14,K.1^22,K.1^30,-1*K.1^22,K.1^26,-1*K.1^22,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^18,-1*K.1^14,-1*K.1^30,K.1^30,K.1^11,-1*K.1^27,K.1^15,-1*K.1^11,-1*K.1^15,-1*K.1^19,-1*K.1^23,K.1^27,K.1^3,-1*K.1^5,K.1^17,-1*K.1^29,K.1^9,-1*K.1^9,-1*K.1^17,K.1^25,-1*K.1^19,-1*K.1^3,K.1^13,-1*K.1^9,K.1^3,-1*K.1,-1*K.1^25,K.1^9,K.1,K.1^29,-1*K.1^29,K.1^17,-1*K.1^15,-1*K.1^13,K.1^15,-1*K.1^27,-1*K.1^11,-1*K.1^31,K.1^31,-1*K.1^23,K.1^21,-1*K.1^31,K.1^25,K.1^5,K.1^7,K.1^11,K.1^7,K.1^5,-1*K.1^13,-1*K.1^17,-1*K.1^21,K.1^21,K.1^19,K.1^19,K.1^23,K.1^29,-1*K.1^21,-1*K.1,-1*K.1^7,-1*K.1^5,K.1^23,-1*K.1^25,K.1^31,-1*K.1^3,K.1^13,-1*K.1^7,K.1,K.1^27,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,K.1^24,-1*K.1^8,K.1^8,-1*K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^12,K.1^20,-1*K.1^4,K.1^28,K.1^4,-1*K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^8,-1*K.1^8,-1*K.1^24,-1*K.1^24,K.1^8,K.1^24,K.1^24,K.1^8,-1*K.1^30,-1*K.1^2,K.1^6,-1*K.1^26,K.1^14,-1*K.1^18,K.1^22,-1*K.1^10,K.1^10,-1*K.1^22,-1*K.1^14,K.1^18,K.1^26,-1*K.1^6,K.1^2,K.1^30,K.1^12,K.1^28,K.1^20,-1*K.1^4,K.1^4,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^4,-1*K.1^20,-1*K.1^28,-1*K.1^4,K.1^20,K.1^9,-1*K.1,K.1^23,-1*K.1^5,K.1^19,-1*K.1^23,K.1,K.1^5,-1*K.1^19,K.1^11,-1*K.1^11,-1*K.1^25,K.1^25,K.1^15,-1*K.1^29,-1*K.1^15,K.1^29,K.1^13,K.1^3,K.1^17,-1*K.1^31,-1*K.1^7,-1*K.1^9,K.1^27,-1*K.1^21,-1*K.1^3,-1*K.1^13,-1*K.1^17,K.1^31,-1*K.1^27,K.1^21,K.1^7,K.1^18,-1*K.1^18,K.1^26,-1*K.1^30,-1*K.1^14,-1*K.1^22,-1*K.1^6,K.1^30,K.1^14,K.1^6,-1*K.1^30,K.1^6,K.1^14,-1*K.1^26,K.1^2,-1*K.1^26,-1*K.1^22,K.1^26,-1*K.1^10,-1*K.1^18,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^6,K.1^10,K.1^22,K.1^22,K.1^30,-1*K.1^14,K.1^18,K.1^2,-1*K.1^2,K.1^21,-1*K.1^5,K.1^17,-1*K.1^21,-1*K.1^17,-1*K.1^13,-1*K.1^9,K.1^5,K.1^29,-1*K.1^27,K.1^15,-1*K.1^3,K.1^23,-1*K.1^23,-1*K.1^15,K.1^7,-1*K.1^13,-1*K.1^29,K.1^19,-1*K.1^23,K.1^29,-1*K.1^31,-1*K.1^7,K.1^23,K.1^31,K.1^3,-1*K.1^3,K.1^15,-1*K.1^17,-1*K.1^19,K.1^17,-1*K.1^5,-1*K.1^21,-1*K.1,K.1,-1*K.1^9,K.1^11,-1*K.1,K.1^7,K.1^27,K.1^25,K.1^21,K.1^25,K.1^27,-1*K.1^19,-1*K.1^15,-1*K.1^11,K.1^11,K.1^13,K.1^13,K.1^9,K.1^3,-1*K.1^11,-1*K.1^31,-1*K.1^25,-1*K.1^27,K.1^9,-1*K.1^7,K.1,-1*K.1^29,K.1^19,-1*K.1^25,K.1^31,K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,-1*K.1^8,K.1^24,-1*K.1^24,K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^20,-1*K.1^12,K.1^28,-1*K.1^4,-1*K.1^28,K.1^4,K.1^12,K.1^20,K.1^24,K.1^24,K.1^8,K.1^8,-1*K.1^24,-1*K.1^8,-1*K.1^8,-1*K.1^24,K.1^2,K.1^30,-1*K.1^26,K.1^6,-1*K.1^18,K.1^14,-1*K.1^10,K.1^22,-1*K.1^22,K.1^10,K.1^18,-1*K.1^14,-1*K.1^6,K.1^26,-1*K.1^30,-1*K.1^2,-1*K.1^20,-1*K.1^4,-1*K.1^12,K.1^28,-1*K.1^28,K.1^12,K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^28,K.1^12,K.1^4,K.1^28,-1*K.1^12,-1*K.1^23,K.1^31,-1*K.1^9,K.1^27,-1*K.1^13,K.1^9,-1*K.1^31,-1*K.1^27,K.1^13,-1*K.1^21,K.1^21,K.1^7,-1*K.1^7,-1*K.1^17,K.1^3,K.1^17,-1*K.1^3,-1*K.1^19,-1*K.1^29,-1*K.1^15,K.1,K.1^25,K.1^23,-1*K.1^5,K.1^11,K.1^29,K.1^19,K.1^15,-1*K.1,K.1^5,-1*K.1^11,-1*K.1^25,-1*K.1^14,K.1^14,-1*K.1^6,K.1^2,K.1^18,K.1^10,K.1^26,-1*K.1^2,-1*K.1^18,-1*K.1^26,K.1^2,-1*K.1^26,-1*K.1^18,K.1^6,-1*K.1^30,K.1^6,K.1^10,-1*K.1^6,K.1^22,K.1^14,K.1^22,K.1^30,-1*K.1^22,K.1^26,-1*K.1^22,-1*K.1^10,-1*K.1^10,-1*K.1^2,K.1^18,-1*K.1^14,-1*K.1^30,K.1^30,-1*K.1^11,K.1^27,-1*K.1^15,K.1^11,K.1^15,K.1^19,K.1^23,-1*K.1^27,-1*K.1^3,K.1^5,-1*K.1^17,K.1^29,-1*K.1^9,K.1^9,K.1^17,-1*K.1^25,K.1^19,K.1^3,-1*K.1^13,K.1^9,-1*K.1^3,K.1,K.1^25,-1*K.1^9,-1*K.1,-1*K.1^29,K.1^29,-1*K.1^17,K.1^15,K.1^13,-1*K.1^15,K.1^27,K.1^11,K.1^31,-1*K.1^31,K.1^23,-1*K.1^21,K.1^31,-1*K.1^25,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^7,-1*K.1^5,K.1^13,K.1^17,K.1^21,-1*K.1^21,-1*K.1^19,-1*K.1^19,-1*K.1^23,-1*K.1^29,K.1^21,K.1,K.1^7,K.1^5,-1*K.1^23,K.1^25,-1*K.1^31,K.1^3,-1*K.1^13,K.1^7,-1*K.1,-1*K.1^27,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^28,K.1^4,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,-1*K.1^4,-1*K.1^28,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^6,-1*K.1^26,K.1^14,-1*K.1^18,-1*K.1^22,K.1^10,K.1^30,-1*K.1^2,K.1^2,-1*K.1^30,K.1^22,-1*K.1^10,K.1^18,-1*K.1^14,K.1^26,K.1^6,K.1^28,-1*K.1^12,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,-1*K.1^4,K.1^12,K.1^20,K.1^4,K.1^21,K.1^13,K.1^11,K.1,K.1^23,-1*K.1^11,-1*K.1^13,-1*K.1,-1*K.1^23,-1*K.1^15,K.1^15,K.1^5,-1*K.1^5,-1*K.1^3,-1*K.1^25,K.1^3,K.1^25,K.1^9,K.1^7,-1*K.1^29,K.1^19,K.1^27,-1*K.1^21,-1*K.1^31,K.1^17,-1*K.1^7,-1*K.1^9,K.1^29,-1*K.1^19,K.1^31,-1*K.1^17,-1*K.1^27,-1*K.1^10,K.1^10,K.1^18,-1*K.1^6,K.1^22,-1*K.1^30,-1*K.1^14,K.1^6,-1*K.1^22,K.1^14,-1*K.1^6,K.1^14,-1*K.1^22,-1*K.1^18,K.1^26,-1*K.1^18,-1*K.1^30,K.1^18,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^26,K.1^2,-1*K.1^14,K.1^2,K.1^30,K.1^30,K.1^6,K.1^22,-1*K.1^10,K.1^26,-1*K.1^26,-1*K.1^17,K.1,-1*K.1^29,K.1^17,K.1^29,-1*K.1^9,-1*K.1^21,-1*K.1,K.1^25,K.1^31,-1*K.1^3,-1*K.1^7,K.1^11,-1*K.1^11,K.1^3,-1*K.1^27,-1*K.1^9,-1*K.1^25,K.1^23,-1*K.1^11,K.1^25,K.1^19,K.1^27,K.1^11,-1*K.1^19,K.1^7,-1*K.1^7,-1*K.1^3,K.1^29,-1*K.1^23,-1*K.1^29,K.1,K.1^17,K.1^13,-1*K.1^13,-1*K.1^21,-1*K.1^15,K.1^13,-1*K.1^27,-1*K.1^31,-1*K.1^5,-1*K.1^17,-1*K.1^5,-1*K.1^31,-1*K.1^23,K.1^3,K.1^15,-1*K.1^15,K.1^9,K.1^9,K.1^21,K.1^7,K.1^15,K.1^19,K.1^5,K.1^31,K.1^21,K.1^27,-1*K.1^13,-1*K.1^25,K.1^23,K.1^5,-1*K.1^19,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^28,-1*K.1^12,K.1^20,K.1^12,-1*K.1^20,K.1^28,K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,K.1^26,K.1^6,-1*K.1^18,K.1^14,K.1^10,-1*K.1^22,-1*K.1^2,K.1^30,-1*K.1^30,K.1^2,-1*K.1^10,K.1^22,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^26,-1*K.1^4,K.1^20,-1*K.1^28,-1*K.1^12,K.1^12,K.1^28,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^11,-1*K.1^19,-1*K.1^21,-1*K.1^31,-1*K.1^9,K.1^21,K.1^19,K.1^31,K.1^9,K.1^17,-1*K.1^17,-1*K.1^27,K.1^27,K.1^29,K.1^7,-1*K.1^29,-1*K.1^7,-1*K.1^23,-1*K.1^25,K.1^3,-1*K.1^13,-1*K.1^5,K.1^11,K.1,-1*K.1^15,K.1^25,K.1^23,-1*K.1^3,K.1^13,-1*K.1,K.1^15,K.1^5,K.1^22,-1*K.1^22,-1*K.1^14,K.1^26,-1*K.1^10,K.1^2,K.1^18,-1*K.1^26,K.1^10,-1*K.1^18,K.1^26,-1*K.1^18,K.1^10,K.1^14,-1*K.1^6,K.1^14,K.1^2,-1*K.1^14,K.1^30,-1*K.1^22,K.1^30,K.1^6,-1*K.1^30,K.1^18,-1*K.1^30,-1*K.1^2,-1*K.1^2,-1*K.1^26,-1*K.1^10,K.1^22,-1*K.1^6,K.1^6,K.1^15,-1*K.1^31,K.1^3,-1*K.1^15,-1*K.1^3,K.1^23,K.1^11,K.1^31,-1*K.1^7,-1*K.1,K.1^29,K.1^25,-1*K.1^21,K.1^21,-1*K.1^29,K.1^5,K.1^23,K.1^7,-1*K.1^9,K.1^21,-1*K.1^7,-1*K.1^13,-1*K.1^5,-1*K.1^21,K.1^13,-1*K.1^25,K.1^25,K.1^29,-1*K.1^3,K.1^9,K.1^3,-1*K.1^31,-1*K.1^15,-1*K.1^19,K.1^19,K.1^11,K.1^17,-1*K.1^19,K.1^5,K.1,K.1^27,K.1^15,K.1^27,K.1,K.1^9,-1*K.1^29,-1*K.1^17,K.1^17,-1*K.1^23,-1*K.1^23,-1*K.1^11,-1*K.1^25,-1*K.1^17,-1*K.1^13,-1*K.1^27,-1*K.1,-1*K.1^11,-1*K.1^5,K.1^19,K.1^7,-1*K.1^9,-1*K.1^27,K.1^13,K.1^31,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^28,K.1^4,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,-1*K.1^4,-1*K.1^28,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^6,-1*K.1^26,K.1^14,-1*K.1^18,-1*K.1^22,K.1^10,K.1^30,-1*K.1^2,K.1^2,-1*K.1^30,K.1^22,-1*K.1^10,K.1^18,-1*K.1^14,K.1^26,K.1^6,K.1^28,-1*K.1^12,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,-1*K.1^4,K.1^12,K.1^20,K.1^4,-1*K.1^21,-1*K.1^13,-1*K.1^11,-1*K.1,-1*K.1^23,K.1^11,K.1^13,K.1,K.1^23,K.1^15,-1*K.1^15,-1*K.1^5,K.1^5,K.1^3,K.1^25,-1*K.1^3,-1*K.1^25,-1*K.1^9,-1*K.1^7,K.1^29,-1*K.1^19,-1*K.1^27,K.1^21,K.1^31,-1*K.1^17,K.1^7,K.1^9,-1*K.1^29,K.1^19,-1*K.1^31,K.1^17,K.1^27,-1*K.1^10,K.1^10,K.1^18,-1*K.1^6,K.1^22,-1*K.1^30,-1*K.1^14,K.1^6,-1*K.1^22,K.1^14,-1*K.1^6,K.1^14,-1*K.1^22,-1*K.1^18,K.1^26,-1*K.1^18,-1*K.1^30,K.1^18,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^26,K.1^2,-1*K.1^14,K.1^2,K.1^30,K.1^30,K.1^6,K.1^22,-1*K.1^10,K.1^26,-1*K.1^26,K.1^17,-1*K.1,K.1^29,-1*K.1^17,-1*K.1^29,K.1^9,K.1^21,K.1,-1*K.1^25,-1*K.1^31,K.1^3,K.1^7,-1*K.1^11,K.1^11,-1*K.1^3,K.1^27,K.1^9,K.1^25,-1*K.1^23,K.1^11,-1*K.1^25,-1*K.1^19,-1*K.1^27,-1*K.1^11,K.1^19,-1*K.1^7,K.1^7,K.1^3,-1*K.1^29,K.1^23,K.1^29,-1*K.1,-1*K.1^17,-1*K.1^13,K.1^13,K.1^21,K.1^15,-1*K.1^13,K.1^27,K.1^31,K.1^5,K.1^17,K.1^5,K.1^31,K.1^23,-1*K.1^3,-1*K.1^15,K.1^15,-1*K.1^9,-1*K.1^9,-1*K.1^21,-1*K.1^7,-1*K.1^15,-1*K.1^19,-1*K.1^5,-1*K.1^31,-1*K.1^21,-1*K.1^27,K.1^13,K.1^25,-1*K.1^23,-1*K.1^5,K.1^19,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^28,-1*K.1^12,K.1^20,K.1^12,-1*K.1^20,K.1^28,K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,K.1^26,K.1^6,-1*K.1^18,K.1^14,K.1^10,-1*K.1^22,-1*K.1^2,K.1^30,-1*K.1^30,K.1^2,-1*K.1^10,K.1^22,-1*K.1^14,K.1^18,-1*K.1^6,-1*K.1^26,-1*K.1^4,K.1^20,-1*K.1^28,-1*K.1^12,K.1^12,K.1^28,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^28,K.1^11,K.1^19,K.1^21,K.1^31,K.1^9,-1*K.1^21,-1*K.1^19,-1*K.1^31,-1*K.1^9,-1*K.1^17,K.1^17,K.1^27,-1*K.1^27,-1*K.1^29,-1*K.1^7,K.1^29,K.1^7,K.1^23,K.1^25,-1*K.1^3,K.1^13,K.1^5,-1*K.1^11,-1*K.1,K.1^15,-1*K.1^25,-1*K.1^23,K.1^3,-1*K.1^13,K.1,-1*K.1^15,-1*K.1^5,K.1^22,-1*K.1^22,-1*K.1^14,K.1^26,-1*K.1^10,K.1^2,K.1^18,-1*K.1^26,K.1^10,-1*K.1^18,K.1^26,-1*K.1^18,K.1^10,K.1^14,-1*K.1^6,K.1^14,K.1^2,-1*K.1^14,K.1^30,-1*K.1^22,K.1^30,K.1^6,-1*K.1^30,K.1^18,-1*K.1^30,-1*K.1^2,-1*K.1^2,-1*K.1^26,-1*K.1^10,K.1^22,-1*K.1^6,K.1^6,-1*K.1^15,K.1^31,-1*K.1^3,K.1^15,K.1^3,-1*K.1^23,-1*K.1^11,-1*K.1^31,K.1^7,K.1,-1*K.1^29,-1*K.1^25,K.1^21,-1*K.1^21,K.1^29,-1*K.1^5,-1*K.1^23,-1*K.1^7,K.1^9,-1*K.1^21,K.1^7,K.1^13,K.1^5,K.1^21,-1*K.1^13,K.1^25,-1*K.1^25,-1*K.1^29,K.1^3,-1*K.1^9,-1*K.1^3,K.1^31,K.1^15,K.1^19,-1*K.1^19,-1*K.1^11,-1*K.1^17,K.1^19,-1*K.1^5,-1*K.1,-1*K.1^27,-1*K.1^15,-1*K.1^27,-1*K.1,-1*K.1^9,K.1^29,K.1^17,-1*K.1^17,K.1^23,K.1^23,K.1^11,K.1^25,K.1^17,K.1^13,K.1^27,K.1,K.1^11,K.1^5,-1*K.1^19,-1*K.1^7,K.1^9,K.1^27,-1*K.1^13,-1*K.1^31,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^28,K.1^4,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,-1*K.1^4,-1*K.1^28,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^6,K.1^26,-1*K.1^14,K.1^18,K.1^22,-1*K.1^10,-1*K.1^30,K.1^2,-1*K.1^2,K.1^30,-1*K.1^22,K.1^10,-1*K.1^18,K.1^14,-1*K.1^26,-1*K.1^6,K.1^28,-1*K.1^12,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,-1*K.1^4,K.1^12,K.1^20,K.1^4,-1*K.1^5,K.1^29,-1*K.1^27,K.1^17,K.1^7,K.1^27,-1*K.1^29,-1*K.1^17,-1*K.1^7,K.1^31,-1*K.1^31,K.1^21,-1*K.1^21,K.1^19,K.1^9,-1*K.1^19,-1*K.1^9,K.1^25,-1*K.1^23,K.1^13,K.1^3,K.1^11,K.1^5,-1*K.1^15,-1*K.1,K.1^23,-1*K.1^25,-1*K.1^13,-1*K.1^3,K.1^15,K.1,-1*K.1^11,K.1^10,-1*K.1^10,-1*K.1^18,K.1^6,-1*K.1^22,K.1^30,K.1^14,-1*K.1^6,K.1^22,-1*K.1^14,K.1^6,-1*K.1^14,K.1^22,K.1^18,-1*K.1^26,K.1^18,K.1^30,-1*K.1^18,K.1^2,-1*K.1^10,K.1^2,K.1^26,-1*K.1^2,K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^30,-1*K.1^6,-1*K.1^22,K.1^10,-1*K.1^26,K.1^26,K.1,K.1^17,K.1^13,-1*K.1,-1*K.1^13,-1*K.1^25,K.1^5,-1*K.1^17,-1*K.1^9,K.1^15,K.1^19,K.1^23,-1*K.1^27,K.1^27,-1*K.1^19,-1*K.1^11,-1*K.1^25,K.1^9,K.1^7,K.1^27,-1*K.1^9,K.1^3,K.1^11,-1*K.1^27,-1*K.1^3,-1*K.1^23,K.1^23,K.1^19,-1*K.1^13,-1*K.1^7,K.1^13,K.1^17,-1*K.1,K.1^29,-1*K.1^29,K.1^5,K.1^31,K.1^29,-1*K.1^11,-1*K.1^15,-1*K.1^21,K.1,-1*K.1^21,-1*K.1^15,-1*K.1^7,-1*K.1^19,-1*K.1^31,K.1^31,K.1^25,K.1^25,-1*K.1^5,-1*K.1^23,-1*K.1^31,K.1^3,K.1^21,K.1^15,-1*K.1^5,K.1^11,-1*K.1^29,K.1^9,K.1^7,K.1^21,-1*K.1^3,-1*K.1^17,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^28,-1*K.1^12,K.1^20,K.1^12,-1*K.1^20,K.1^28,K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^26,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^10,K.1^22,K.1^2,-1*K.1^30,K.1^30,-1*K.1^2,K.1^10,-1*K.1^22,K.1^14,-1*K.1^18,K.1^6,K.1^26,-1*K.1^4,K.1^20,-1*K.1^28,-1*K.1^12,K.1^12,K.1^28,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^28,K.1^27,-1*K.1^3,K.1^5,-1*K.1^15,-1*K.1^25,-1*K.1^5,K.1^3,K.1^15,K.1^25,-1*K.1,K.1,-1*K.1^11,K.1^11,-1*K.1^13,-1*K.1^23,K.1^13,K.1^23,-1*K.1^7,K.1^9,-1*K.1^19,-1*K.1^29,-1*K.1^21,-1*K.1^27,K.1^17,K.1^31,-1*K.1^9,K.1^7,K.1^19,K.1^29,-1*K.1^17,-1*K.1^31,K.1^21,-1*K.1^22,K.1^22,K.1^14,-1*K.1^26,K.1^10,-1*K.1^2,-1*K.1^18,K.1^26,-1*K.1^10,K.1^18,-1*K.1^26,K.1^18,-1*K.1^10,-1*K.1^14,K.1^6,-1*K.1^14,-1*K.1^2,K.1^14,-1*K.1^30,K.1^22,-1*K.1^30,-1*K.1^6,K.1^30,-1*K.1^18,K.1^30,K.1^2,K.1^2,K.1^26,K.1^10,-1*K.1^22,K.1^6,-1*K.1^6,-1*K.1^31,-1*K.1^15,-1*K.1^19,K.1^31,K.1^19,K.1^7,-1*K.1^27,K.1^15,K.1^23,-1*K.1^17,-1*K.1^13,-1*K.1^9,K.1^5,-1*K.1^5,K.1^13,K.1^21,K.1^7,-1*K.1^23,-1*K.1^25,-1*K.1^5,K.1^23,-1*K.1^29,-1*K.1^21,K.1^5,K.1^29,K.1^9,-1*K.1^9,-1*K.1^13,K.1^19,K.1^25,-1*K.1^19,-1*K.1^15,K.1^31,-1*K.1^3,K.1^3,-1*K.1^27,-1*K.1,-1*K.1^3,K.1^21,K.1^17,K.1^11,-1*K.1^31,K.1^11,K.1^17,K.1^25,K.1^13,K.1,-1*K.1,-1*K.1^7,-1*K.1^7,K.1^27,K.1^9,K.1,-1*K.1^29,-1*K.1^11,-1*K.1^17,K.1^27,-1*K.1^21,K.1^3,-1*K.1^23,-1*K.1^25,-1*K.1^11,K.1^29,K.1^15,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,K.1^28,K.1^4,K.1^20,-1*K.1^12,-1*K.1^20,K.1^12,-1*K.1^4,-1*K.1^28,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^6,K.1^26,-1*K.1^14,K.1^18,K.1^22,-1*K.1^10,-1*K.1^30,K.1^2,-1*K.1^2,K.1^30,-1*K.1^22,K.1^10,-1*K.1^18,K.1^14,-1*K.1^26,-1*K.1^6,K.1^28,-1*K.1^12,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^28,-1*K.1^12,-1*K.1^28,K.1^12,K.1^28,-1*K.1^20,-1*K.1^4,K.1^12,K.1^20,K.1^4,K.1^5,-1*K.1^29,K.1^27,-1*K.1^17,-1*K.1^7,-1*K.1^27,K.1^29,K.1^17,K.1^7,-1*K.1^31,K.1^31,-1*K.1^21,K.1^21,-1*K.1^19,-1*K.1^9,K.1^19,K.1^9,-1*K.1^25,K.1^23,-1*K.1^13,-1*K.1^3,-1*K.1^11,-1*K.1^5,K.1^15,K.1,-1*K.1^23,K.1^25,K.1^13,K.1^3,-1*K.1^15,-1*K.1,K.1^11,K.1^10,-1*K.1^10,-1*K.1^18,K.1^6,-1*K.1^22,K.1^30,K.1^14,-1*K.1^6,K.1^22,-1*K.1^14,K.1^6,-1*K.1^14,K.1^22,K.1^18,-1*K.1^26,K.1^18,K.1^30,-1*K.1^18,K.1^2,-1*K.1^10,K.1^2,K.1^26,-1*K.1^2,K.1^14,-1*K.1^2,-1*K.1^30,-1*K.1^30,-1*K.1^6,-1*K.1^22,K.1^10,-1*K.1^26,K.1^26,-1*K.1,-1*K.1^17,-1*K.1^13,K.1,K.1^13,K.1^25,-1*K.1^5,K.1^17,K.1^9,-1*K.1^15,-1*K.1^19,-1*K.1^23,K.1^27,-1*K.1^27,K.1^19,K.1^11,K.1^25,-1*K.1^9,-1*K.1^7,-1*K.1^27,K.1^9,-1*K.1^3,-1*K.1^11,K.1^27,K.1^3,K.1^23,-1*K.1^23,-1*K.1^19,K.1^13,K.1^7,-1*K.1^13,-1*K.1^17,K.1,-1*K.1^29,K.1^29,-1*K.1^5,-1*K.1^31,-1*K.1^29,K.1^11,K.1^15,K.1^21,-1*K.1,K.1^21,K.1^15,K.1^7,K.1^19,K.1^31,-1*K.1^31,-1*K.1^25,-1*K.1^25,K.1^5,K.1^23,K.1^31,-1*K.1^3,-1*K.1^21,-1*K.1^15,K.1^5,-1*K.1^11,K.1^29,-1*K.1^9,-1*K.1^7,-1*K.1^21,K.1^3,K.1^17,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,-1*K.1^4,-1*K.1^28,-1*K.1^12,K.1^20,K.1^12,-1*K.1^20,K.1^28,K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^26,-1*K.1^6,K.1^18,-1*K.1^14,-1*K.1^10,K.1^22,K.1^2,-1*K.1^30,K.1^30,-1*K.1^2,K.1^10,-1*K.1^22,K.1^14,-1*K.1^18,K.1^6,K.1^26,-1*K.1^4,K.1^20,-1*K.1^28,-1*K.1^12,K.1^12,K.1^28,K.1^4,K.1^20,K.1^4,-1*K.1^20,-1*K.1^4,K.1^12,K.1^28,-1*K.1^20,-1*K.1^12,-1*K.1^28,-1*K.1^27,K.1^3,-1*K.1^5,K.1^15,K.1^25,K.1^5,-1*K.1^3,-1*K.1^15,-1*K.1^25,K.1,-1*K.1,K.1^11,-1*K.1^11,K.1^13,K.1^23,-1*K.1^13,-1*K.1^23,K.1^7,-1*K.1^9,K.1^19,K.1^29,K.1^21,K.1^27,-1*K.1^17,-1*K.1^31,K.1^9,-1*K.1^7,-1*K.1^19,-1*K.1^29,K.1^17,K.1^31,-1*K.1^21,-1*K.1^22,K.1^22,K.1^14,-1*K.1^26,K.1^10,-1*K.1^2,-1*K.1^18,K.1^26,-1*K.1^10,K.1^18,-1*K.1^26,K.1^18,-1*K.1^10,-1*K.1^14,K.1^6,-1*K.1^14,-1*K.1^2,K.1^14,-1*K.1^30,K.1^22,-1*K.1^30,-1*K.1^6,K.1^30,-1*K.1^18,K.1^30,K.1^2,K.1^2,K.1^26,K.1^10,-1*K.1^22,K.1^6,-1*K.1^6,K.1^31,K.1^15,K.1^19,-1*K.1^31,-1*K.1^19,-1*K.1^7,K.1^27,-1*K.1^15,-1*K.1^23,K.1^17,K.1^13,K.1^9,-1*K.1^5,K.1^5,-1*K.1^13,-1*K.1^21,-1*K.1^7,K.1^23,K.1^25,K.1^5,-1*K.1^23,K.1^29,K.1^21,-1*K.1^5,-1*K.1^29,-1*K.1^9,K.1^9,K.1^13,-1*K.1^19,-1*K.1^25,K.1^19,K.1^15,-1*K.1^31,K.1^3,-1*K.1^3,K.1^27,K.1,K.1^3,-1*K.1^21,-1*K.1^17,-1*K.1^11,K.1^31,-1*K.1^11,-1*K.1^17,-1*K.1^25,-1*K.1^13,-1*K.1,K.1,K.1^7,K.1^7,-1*K.1^27,-1*K.1^9,-1*K.1,K.1^29,K.1^11,K.1^17,-1*K.1^27,K.1^21,-1*K.1^3,K.1^23,K.1^25,K.1^11,-1*K.1^29,-1*K.1^15,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^12,K.1^20,-1*K.1^12,K.1^4,K.1^28,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^22,K.1^10,-1*K.1^30,K.1^2,-1*K.1^6,K.1^26,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^6,-1*K.1^26,-1*K.1^2,K.1^30,-1*K.1^10,-1*K.1^22,-1*K.1^28,K.1^12,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^4,K.1^29,K.1^21,K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^3,-1*K.1^21,K.1^9,K.1^15,K.1^7,-1*K.1^7,K.1^13,-1*K.1^13,K.1^27,-1*K.1,-1*K.1^27,K.1,-1*K.1^17,K.1^31,K.1^5,K.1^11,K.1^19,-1*K.1^29,K.1^23,-1*K.1^25,-1*K.1^31,K.1^17,-1*K.1^5,-1*K.1^11,-1*K.1^23,K.1^25,-1*K.1^19,-1*K.1^26,K.1^26,-1*K.1^2,K.1^22,K.1^6,-1*K.1^14,K.1^30,-1*K.1^22,-1*K.1^6,-1*K.1^30,K.1^22,-1*K.1^30,-1*K.1^6,K.1^2,-1*K.1^10,K.1^2,-1*K.1^14,-1*K.1^2,-1*K.1^18,K.1^26,-1*K.1^18,K.1^10,K.1^18,K.1^30,K.1^18,K.1^14,K.1^14,-1*K.1^22,K.1^6,-1*K.1^26,-1*K.1^10,K.1^10,K.1^25,-1*K.1^9,K.1^5,-1*K.1^25,-1*K.1^5,K.1^17,-1*K.1^29,K.1^9,K.1,-1*K.1^23,K.1^27,-1*K.1^31,K.1^3,-1*K.1^3,-1*K.1^27,-1*K.1^19,K.1^17,-1*K.1,-1*K.1^15,-1*K.1^3,K.1,K.1^11,K.1^19,K.1^3,-1*K.1^11,K.1^31,-1*K.1^31,K.1^27,-1*K.1^5,K.1^15,K.1^5,-1*K.1^9,-1*K.1^25,K.1^21,-1*K.1^21,-1*K.1^29,K.1^7,K.1^21,-1*K.1^19,K.1^23,-1*K.1^13,K.1^25,-1*K.1^13,K.1^23,K.1^15,-1*K.1^27,-1*K.1^7,K.1^7,-1*K.1^17,-1*K.1^17,K.1^29,K.1^31,-1*K.1^7,K.1^11,K.1^13,-1*K.1^23,K.1^29,K.1^19,-1*K.1^21,-1*K.1,-1*K.1^15,K.1^13,-1*K.1^11,K.1^9,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^28,K.1^12,-1*K.1^20,-1*K.1^12,K.1^20,-1*K.1^28,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^10,-1*K.1^22,K.1^2,-1*K.1^30,K.1^26,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^26,K.1^6,K.1^30,-1*K.1^2,K.1^22,K.1^10,K.1^4,-1*K.1^20,K.1^28,K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,-1*K.1^28,K.1^20,K.1^12,K.1^28,-1*K.1^3,-1*K.1^11,-1*K.1^29,K.1^23,K.1^17,K.1^29,K.1^11,-1*K.1^23,-1*K.1^17,-1*K.1^25,K.1^25,-1*K.1^19,K.1^19,-1*K.1^5,K.1^31,K.1^5,-1*K.1^31,K.1^15,-1*K.1,-1*K.1^27,-1*K.1^21,-1*K.1^13,K.1^3,-1*K.1^9,K.1^7,K.1,-1*K.1^15,K.1^27,K.1^21,K.1^9,-1*K.1^7,K.1^13,K.1^6,-1*K.1^6,K.1^30,-1*K.1^10,-1*K.1^26,K.1^18,-1*K.1^2,K.1^10,K.1^26,K.1^2,-1*K.1^10,K.1^2,K.1^26,-1*K.1^30,K.1^22,-1*K.1^30,K.1^18,K.1^30,K.1^14,-1*K.1^6,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^18,K.1^10,-1*K.1^26,K.1^6,K.1^22,-1*K.1^22,-1*K.1^7,K.1^23,-1*K.1^27,K.1^7,K.1^27,-1*K.1^15,K.1^3,-1*K.1^23,-1*K.1^31,K.1^9,-1*K.1^5,K.1,-1*K.1^29,K.1^29,K.1^5,K.1^13,-1*K.1^15,K.1^31,K.1^17,K.1^29,-1*K.1^31,-1*K.1^21,-1*K.1^13,-1*K.1^29,K.1^21,-1*K.1,K.1,-1*K.1^5,K.1^27,-1*K.1^17,-1*K.1^27,K.1^23,K.1^7,-1*K.1^11,K.1^11,K.1^3,-1*K.1^25,-1*K.1^11,K.1^13,-1*K.1^9,K.1^19,-1*K.1^7,K.1^19,-1*K.1^9,-1*K.1^17,K.1^5,K.1^25,-1*K.1^25,K.1^15,K.1^15,-1*K.1^3,-1*K.1,K.1^25,-1*K.1^21,-1*K.1^19,K.1^9,-1*K.1^3,-1*K.1^13,K.1^11,K.1^31,K.1^17,-1*K.1^19,K.1^21,-1*K.1^23,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^12,K.1^20,-1*K.1^12,K.1^4,K.1^28,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,K.1^22,K.1^10,-1*K.1^30,K.1^2,-1*K.1^6,K.1^26,K.1^14,-1*K.1^18,K.1^18,-1*K.1^14,K.1^6,-1*K.1^26,-1*K.1^2,K.1^30,-1*K.1^10,-1*K.1^22,-1*K.1^28,K.1^12,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^4,-1*K.1^29,-1*K.1^21,-1*K.1^3,K.1^9,K.1^15,K.1^3,K.1^21,-1*K.1^9,-1*K.1^15,-1*K.1^7,K.1^7,-1*K.1^13,K.1^13,-1*K.1^27,K.1,K.1^27,-1*K.1,K.1^17,-1*K.1^31,-1*K.1^5,-1*K.1^11,-1*K.1^19,K.1^29,-1*K.1^23,K.1^25,K.1^31,-1*K.1^17,K.1^5,K.1^11,K.1^23,-1*K.1^25,K.1^19,-1*K.1^26,K.1^26,-1*K.1^2,K.1^22,K.1^6,-1*K.1^14,K.1^30,-1*K.1^22,-1*K.1^6,-1*K.1^30,K.1^22,-1*K.1^30,-1*K.1^6,K.1^2,-1*K.1^10,K.1^2,-1*K.1^14,-1*K.1^2,-1*K.1^18,K.1^26,-1*K.1^18,K.1^10,K.1^18,K.1^30,K.1^18,K.1^14,K.1^14,-1*K.1^22,K.1^6,-1*K.1^26,-1*K.1^10,K.1^10,-1*K.1^25,K.1^9,-1*K.1^5,K.1^25,K.1^5,-1*K.1^17,K.1^29,-1*K.1^9,-1*K.1,K.1^23,-1*K.1^27,K.1^31,-1*K.1^3,K.1^3,K.1^27,K.1^19,-1*K.1^17,K.1,K.1^15,K.1^3,-1*K.1,-1*K.1^11,-1*K.1^19,-1*K.1^3,K.1^11,-1*K.1^31,K.1^31,-1*K.1^27,K.1^5,-1*K.1^15,-1*K.1^5,K.1^9,K.1^25,-1*K.1^21,K.1^21,K.1^29,-1*K.1^7,-1*K.1^21,K.1^19,-1*K.1^23,K.1^13,-1*K.1^25,K.1^13,-1*K.1^23,-1*K.1^15,K.1^27,K.1^7,-1*K.1^7,K.1^17,K.1^17,-1*K.1^29,-1*K.1^31,K.1^7,-1*K.1^11,-1*K.1^13,K.1^23,-1*K.1^29,-1*K.1^19,K.1^21,K.1,K.1^15,-1*K.1^13,K.1^11,-1*K.1^9,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^28,K.1^12,-1*K.1^20,-1*K.1^12,K.1^20,-1*K.1^28,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,-1*K.1^10,-1*K.1^22,K.1^2,-1*K.1^30,K.1^26,-1*K.1^6,-1*K.1^18,K.1^14,-1*K.1^14,K.1^18,-1*K.1^26,K.1^6,K.1^30,-1*K.1^2,K.1^22,K.1^10,K.1^4,-1*K.1^20,K.1^28,K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,-1*K.1^28,K.1^20,K.1^12,K.1^28,K.1^3,K.1^11,K.1^29,-1*K.1^23,-1*K.1^17,-1*K.1^29,-1*K.1^11,K.1^23,K.1^17,K.1^25,-1*K.1^25,K.1^19,-1*K.1^19,K.1^5,-1*K.1^31,-1*K.1^5,K.1^31,-1*K.1^15,K.1,K.1^27,K.1^21,K.1^13,-1*K.1^3,K.1^9,-1*K.1^7,-1*K.1,K.1^15,-1*K.1^27,-1*K.1^21,-1*K.1^9,K.1^7,-1*K.1^13,K.1^6,-1*K.1^6,K.1^30,-1*K.1^10,-1*K.1^26,K.1^18,-1*K.1^2,K.1^10,K.1^26,K.1^2,-1*K.1^10,K.1^2,K.1^26,-1*K.1^30,K.1^22,-1*K.1^30,K.1^18,K.1^30,K.1^14,-1*K.1^6,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,-1*K.1^14,-1*K.1^18,-1*K.1^18,K.1^10,-1*K.1^26,K.1^6,K.1^22,-1*K.1^22,K.1^7,-1*K.1^23,K.1^27,-1*K.1^7,-1*K.1^27,K.1^15,-1*K.1^3,K.1^23,K.1^31,-1*K.1^9,K.1^5,-1*K.1,K.1^29,-1*K.1^29,-1*K.1^5,-1*K.1^13,K.1^15,-1*K.1^31,-1*K.1^17,-1*K.1^29,K.1^31,K.1^21,K.1^13,K.1^29,-1*K.1^21,K.1,-1*K.1,K.1^5,-1*K.1^27,K.1^17,K.1^27,-1*K.1^23,-1*K.1^7,K.1^11,-1*K.1^11,-1*K.1^3,K.1^25,K.1^11,-1*K.1^13,K.1^9,-1*K.1^19,K.1^7,-1*K.1^19,K.1^9,K.1^17,-1*K.1^5,-1*K.1^25,K.1^25,-1*K.1^15,-1*K.1^15,K.1^3,K.1,-1*K.1^25,K.1^21,K.1^19,-1*K.1^9,K.1^3,K.1^13,-1*K.1^11,-1*K.1^31,-1*K.1^17,K.1^19,-1*K.1^21,K.1^23,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^12,K.1^20,-1*K.1^12,K.1^4,K.1^28,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^22,-1*K.1^10,K.1^30,-1*K.1^2,K.1^6,-1*K.1^26,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^6,K.1^26,K.1^2,-1*K.1^30,K.1^10,K.1^22,-1*K.1^28,K.1^12,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^4,-1*K.1^13,-1*K.1^5,-1*K.1^19,-1*K.1^25,K.1^31,K.1^19,K.1^5,K.1^25,-1*K.1^31,-1*K.1^23,K.1^23,K.1^29,-1*K.1^29,K.1^11,-1*K.1^17,-1*K.1^11,K.1^17,K.1,K.1^15,K.1^21,-1*K.1^27,K.1^3,K.1^13,K.1^7,K.1^9,-1*K.1^15,-1*K.1,-1*K.1^21,K.1^27,-1*K.1^7,-1*K.1^9,-1*K.1^3,K.1^26,-1*K.1^26,K.1^2,-1*K.1^22,-1*K.1^6,K.1^14,-1*K.1^30,K.1^22,K.1^6,K.1^30,-1*K.1^22,K.1^30,K.1^6,-1*K.1^2,K.1^10,-1*K.1^2,K.1^14,K.1^2,K.1^18,-1*K.1^26,K.1^18,-1*K.1^10,-1*K.1^18,-1*K.1^30,-1*K.1^18,-1*K.1^14,-1*K.1^14,K.1^22,-1*K.1^6,K.1^26,K.1^10,-1*K.1^10,-1*K.1^9,-1*K.1^25,K.1^21,K.1^9,-1*K.1^21,-1*K.1,K.1^13,K.1^25,K.1^17,-1*K.1^7,K.1^11,-1*K.1^15,-1*K.1^19,K.1^19,-1*K.1^11,-1*K.1^3,-1*K.1,-1*K.1^17,K.1^31,K.1^19,K.1^17,-1*K.1^27,K.1^3,-1*K.1^19,K.1^27,K.1^15,-1*K.1^15,K.1^11,-1*K.1^21,-1*K.1^31,K.1^21,-1*K.1^25,K.1^9,-1*K.1^5,K.1^5,K.1^13,-1*K.1^23,-1*K.1^5,-1*K.1^3,K.1^7,-1*K.1^29,-1*K.1^9,-1*K.1^29,K.1^7,-1*K.1^31,-1*K.1^11,K.1^23,-1*K.1^23,K.1,K.1,-1*K.1^13,K.1^15,K.1^23,-1*K.1^27,K.1^29,-1*K.1^7,-1*K.1^13,K.1^3,K.1^5,-1*K.1^17,K.1^31,K.1^29,K.1^27,K.1^25,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^28,K.1^12,-1*K.1^20,-1*K.1^12,K.1^20,-1*K.1^28,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,K.1^10,K.1^22,-1*K.1^2,K.1^30,-1*K.1^26,K.1^6,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^26,-1*K.1^6,-1*K.1^30,K.1^2,-1*K.1^22,-1*K.1^10,K.1^4,-1*K.1^20,K.1^28,K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,-1*K.1^28,K.1^20,K.1^12,K.1^28,K.1^19,K.1^27,K.1^13,K.1^7,-1*K.1,-1*K.1^13,-1*K.1^27,-1*K.1^7,K.1,K.1^9,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^21,K.1^15,K.1^21,-1*K.1^15,-1*K.1^31,-1*K.1^17,-1*K.1^11,K.1^5,-1*K.1^29,-1*K.1^19,-1*K.1^25,-1*K.1^23,K.1^17,K.1^31,K.1^11,-1*K.1^5,K.1^25,K.1^23,K.1^29,-1*K.1^6,K.1^6,-1*K.1^30,K.1^10,K.1^26,-1*K.1^18,K.1^2,-1*K.1^10,-1*K.1^26,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^26,K.1^30,-1*K.1^22,K.1^30,-1*K.1^18,-1*K.1^30,-1*K.1^14,K.1^6,-1*K.1^14,K.1^22,K.1^14,K.1^2,K.1^14,K.1^18,K.1^18,-1*K.1^10,K.1^26,-1*K.1^6,-1*K.1^22,K.1^22,K.1^23,K.1^7,-1*K.1^11,-1*K.1^23,K.1^11,K.1^31,-1*K.1^19,-1*K.1^7,-1*K.1^15,K.1^25,-1*K.1^21,K.1^17,K.1^13,-1*K.1^13,K.1^21,K.1^29,K.1^31,K.1^15,-1*K.1,-1*K.1^13,-1*K.1^15,K.1^5,-1*K.1^29,K.1^13,-1*K.1^5,-1*K.1^17,K.1^17,-1*K.1^21,K.1^11,K.1,-1*K.1^11,K.1^7,-1*K.1^23,K.1^27,-1*K.1^27,-1*K.1^19,K.1^9,K.1^27,K.1^29,-1*K.1^25,K.1^3,K.1^23,K.1^3,-1*K.1^25,K.1,K.1^21,-1*K.1^9,K.1^9,-1*K.1^31,-1*K.1^31,K.1^19,-1*K.1^17,-1*K.1^9,K.1^5,-1*K.1^3,K.1^25,K.1^19,-1*K.1^29,-1*K.1^27,K.1^15,-1*K.1,-1*K.1^3,-1*K.1^5,-1*K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,-1*K.1^16,K.1^16,-1,-1,-1*K.1^24,K.1^8,-1*K.1^8,K.1^24,-1*K.1^16,K.1^16,-1*K.1^16,K.1^16,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^12,K.1^20,-1*K.1^12,K.1^4,K.1^28,K.1^8,K.1^8,K.1^24,K.1^24,-1*K.1^8,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^22,-1*K.1^10,K.1^30,-1*K.1^2,K.1^6,-1*K.1^26,-1*K.1^14,K.1^18,-1*K.1^18,K.1^14,-1*K.1^6,K.1^26,K.1^2,-1*K.1^30,K.1^10,K.1^22,-1*K.1^28,K.1^12,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^28,K.1^12,K.1^28,-1*K.1^12,-1*K.1^28,K.1^20,K.1^4,-1*K.1^12,-1*K.1^20,-1*K.1^4,K.1^13,K.1^5,K.1^19,K.1^25,-1*K.1^31,-1*K.1^19,-1*K.1^5,-1*K.1^25,K.1^31,K.1^23,-1*K.1^23,-1*K.1^29,K.1^29,-1*K.1^11,K.1^17,K.1^11,-1*K.1^17,-1*K.1,-1*K.1^15,-1*K.1^21,K.1^27,-1*K.1^3,-1*K.1^13,-1*K.1^7,-1*K.1^9,K.1^15,K.1,K.1^21,-1*K.1^27,K.1^7,K.1^9,K.1^3,K.1^26,-1*K.1^26,K.1^2,-1*K.1^22,-1*K.1^6,K.1^14,-1*K.1^30,K.1^22,K.1^6,K.1^30,-1*K.1^22,K.1^30,K.1^6,-1*K.1^2,K.1^10,-1*K.1^2,K.1^14,K.1^2,K.1^18,-1*K.1^26,K.1^18,-1*K.1^10,-1*K.1^18,-1*K.1^30,-1*K.1^18,-1*K.1^14,-1*K.1^14,K.1^22,-1*K.1^6,K.1^26,K.1^10,-1*K.1^10,K.1^9,K.1^25,-1*K.1^21,-1*K.1^9,K.1^21,K.1,-1*K.1^13,-1*K.1^25,-1*K.1^17,K.1^7,-1*K.1^11,K.1^15,K.1^19,-1*K.1^19,K.1^11,K.1^3,K.1,K.1^17,-1*K.1^31,-1*K.1^19,-1*K.1^17,K.1^27,-1*K.1^3,K.1^19,-1*K.1^27,-1*K.1^15,K.1^15,-1*K.1^11,K.1^21,K.1^31,-1*K.1^21,K.1^25,-1*K.1^9,K.1^5,-1*K.1^5,-1*K.1^13,K.1^23,K.1^5,K.1^3,-1*K.1^7,K.1^29,K.1^9,K.1^29,-1*K.1^7,K.1^31,K.1^11,-1*K.1^23,K.1^23,-1*K.1,-1*K.1,K.1^13,-1*K.1^15,-1*K.1^23,K.1^27,-1*K.1^29,K.1^7,K.1^13,-1*K.1^3,-1*K.1^5,K.1^17,-1*K.1^31,-1*K.1^29,-1*K.1^27,-1*K.1^25,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(64: Sparse := true); S := [ K |1,-1,1,1,K.1^16,-1*K.1^16,-1,-1,K.1^8,-1*K.1^24,K.1^24,-1*K.1^8,K.1^16,-1*K.1^16,K.1^16,-1*K.1^16,K.1^4,K.1^28,K.1^12,-1*K.1^20,-1*K.1^12,K.1^20,-1*K.1^28,-1*K.1^4,-1*K.1^24,-1*K.1^24,-1*K.1^8,-1*K.1^8,K.1^24,K.1^8,K.1^8,K.1^24,K.1^10,K.1^22,-1*K.1^2,K.1^30,-1*K.1^26,K.1^6,K.1^18,-1*K.1^14,K.1^14,-1*K.1^18,K.1^26,-1*K.1^6,-1*K.1^30,K.1^2,-1*K.1^22,-1*K.1^10,K.1^4,-1*K.1^20,K.1^28,K.1^12,-1*K.1^12,-1*K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^20,K.1^4,-1*K.1^12,-1*K.1^28,K.1^20,K.1^12,K.1^28,-1*K.1^19,-1*K.1^27,-1*K.1^13,-1*K.1^7,K.1,K.1^13,K.1^27,K.1^7,-1*K.1,-1*K.1^9,K.1^9,K.1^3,-1*K.1^3,K.1^21,-1*K.1^15,-1*K.1^21,K.1^15,K.1^31,K.1^17,K.1^11,-1*K.1^5,K.1^29,K.1^19,K.1^25,K.1^23,-1*K.1^17,-1*K.1^31,-1*K.1^11,K.1^5,-1*K.1^25,-1*K.1^23,-1*K.1^29,-1*K.1^6,K.1^6,-1*K.1^30,K.1^10,K.1^26,-1*K.1^18,K.1^2,-1*K.1^10,-1*K.1^26,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^26,K.1^30,-1*K.1^22,K.1^30,-1*K.1^18,-1*K.1^30,-1*K.1^14,K.1^6,-1*K.1^14,K.1^22,K.1^14,K.1^2,K.1^14,K.1^18,K.1^18,-1*K.1^10,K.1^26,-1*K.1^6,-1*K.1^22,K.1^22,-1*K.1^23,-1*K.1^7,K.1^11,K.1^23,-1*K.1^11,-1*K.1^31,K.1^19,K.1^7,K.1^15,-1*K.1^25,K.1^21,-1*K.1^17,-1*K.1^13,K.1^13,-1*K.1^21,-1*K.1^29,-1*K.1^31,-1*K.1^15,K.1,K.1^13,K.1^15,-1*K.1^5,K.1^29,-1*K.1^13,K.1^5,K.1^17,-1*K.1^17,K.1^21,-1*K.1^11,-1*K.1,K.1^11,-1*K.1^7,K.1^23,-1*K.1^27,K.1^27,K.1^19,-1*K.1^9,-1*K.1^27,-1*K.1^29,K.1^25,-1*K.1^3,-1*K.1^23,-1*K.1^3,K.1^25,-1*K.1,-1*K.1^21,K.1^9,-1*K.1^9,K.1^31,K.1^31,-1*K.1^19,K.1^17,K.1^9,-1*K.1^5,K.1^3,-1*K.1^25,-1*K.1^19,K.1^29,K.1^27,-1*K.1^15,K.1,K.1^3,K.1^5,K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^40,K.1^8,K.1^40,-1*K.1^8,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,-1*K.1^6,K.1^42,-1*K.1^20,K.1^20,-1*K.1^44,-1*K.1^28,K.1^44,-1*K.1^44,-1*K.1^20,-1*K.1^4,K.1^4,K.1^20,K.1^4,-1*K.1^28,K.1^28,-1*K.1^4,K.1^44,K.1^28,-1*K.1^3,K.1^27,K.1^45,K.1^39,K.1^33,K.1^45,K.1^27,K.1^39,K.1^33,K.1^9,K.1^9,K.1^3,K.1^3,K.1^21,K.1^15,K.1^21,K.1^15,-1*K.1^15,-1*K.1^33,-1*K.1^27,-1*K.1^21,-1*K.1^45,-1*K.1^3,-1*K.1^9,-1*K.1^39,-1*K.1^33,-1*K.1^15,-1*K.1^27,-1*K.1^21,-1*K.1^9,-1*K.1^39,-1*K.1^45,-1*K.1^22,K.1^38,-1*K.1^14,K.1^10,K.1^26,-1*K.1^34,K.1^34,-1*K.1^26,-1*K.1^10,K.1^2,-1*K.1^26,K.1^34,K.1^26,-1*K.1^14,-1*K.1^38,-1*K.1^46,-1*K.1^2,-1*K.1^46,K.1^46,-1*K.1^22,K.1^14,K.1^22,K.1^14,K.1^2,K.1^46,-1*K.1^34,-1*K.1^2,K.1^10,-1*K.1^10,K.1^38,K.1^22,-1*K.1^38,K.1^23,K.1^7,K.1^11,-1*K.1^7,K.1^43,-1*K.1^47,K.1^19,-1*K.1^23,-1*K.1^31,-1*K.1^41,-1*K.1^37,-1*K.1,K.1^13,-1*K.1^29,-1*K.1^37,K.1^29,K.1^31,-1*K.1^31,-1*K.1^17,K.1^13,K.1^47,K.1^37,-1*K.1^13,-1*K.1^29,K.1^37,K.1^17,K.1^17,-1*K.1^5,K.1^11,-1*K.1^17,K.1^43,-1*K.1^23,K.1^23,-1*K.1^43,-1*K.1^11,-1*K.1^35,-1*K.1^25,-1*K.1^11,-1*K.1^13,K.1^25,K.1^35,-1*K.1^7,-1*K.1^19,-1*K.1^41,K.1,-1*K.1^5,K.1^41,K.1^41,K.1^31,-1*K.1^47,K.1^19,-1*K.1,-1*K.1^25,K.1^5,-1*K.1^19,K.1^25,-1*K.1^35,K.1^29,-1*K.1^43,K.1^47,K.1,K.1^35,K.1^5,K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,-1*K.1^8,K.1^40,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,K.1^42,-1*K.1^6,K.1^28,-1*K.1^28,K.1^4,K.1^20,-1*K.1^4,K.1^4,K.1^28,K.1^44,-1*K.1^44,-1*K.1^28,-1*K.1^44,K.1^20,-1*K.1^20,K.1^44,-1*K.1^4,-1*K.1^20,K.1^45,-1*K.1^21,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^3,-1*K.1^21,-1*K.1^9,-1*K.1^15,-1*K.1^39,-1*K.1^39,-1*K.1^45,-1*K.1^45,-1*K.1^27,-1*K.1^33,-1*K.1^27,-1*K.1^33,K.1^33,K.1^15,K.1^21,K.1^27,K.1^3,K.1^45,K.1^39,K.1^9,K.1^15,K.1^33,K.1^21,K.1^27,K.1^39,K.1^9,K.1^3,K.1^26,-1*K.1^10,K.1^34,-1*K.1^38,-1*K.1^22,K.1^14,-1*K.1^14,K.1^22,K.1^38,-1*K.1^46,K.1^22,-1*K.1^14,-1*K.1^22,K.1^34,K.1^10,K.1^2,K.1^46,K.1^2,-1*K.1^2,K.1^26,-1*K.1^34,-1*K.1^26,-1*K.1^34,-1*K.1^46,-1*K.1^2,K.1^14,K.1^46,-1*K.1^38,K.1^38,-1*K.1^10,-1*K.1^26,K.1^10,-1*K.1^25,-1*K.1^41,-1*K.1^37,K.1^41,-1*K.1^5,K.1,-1*K.1^29,K.1^25,K.1^17,K.1^7,K.1^11,K.1^47,-1*K.1^35,K.1^19,K.1^11,-1*K.1^19,-1*K.1^17,K.1^17,K.1^31,-1*K.1^35,-1*K.1,-1*K.1^11,K.1^35,K.1^19,-1*K.1^11,-1*K.1^31,-1*K.1^31,K.1^43,-1*K.1^37,K.1^31,-1*K.1^5,K.1^25,-1*K.1^25,K.1^5,K.1^37,K.1^13,K.1^23,K.1^37,K.1^35,-1*K.1^23,-1*K.1^13,K.1^41,K.1^29,K.1^7,-1*K.1^47,K.1^43,-1*K.1^7,-1*K.1^7,-1*K.1^17,K.1,-1*K.1^29,K.1^47,K.1^23,-1*K.1^43,K.1^29,-1*K.1^23,K.1^13,-1*K.1^19,K.1^5,-1*K.1,-1*K.1^47,-1*K.1^13,-1*K.1^43,-1*K.1^41,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^40,K.1^8,K.1^40,-1*K.1^8,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,-1*K.1^6,K.1^42,-1*K.1^20,K.1^20,-1*K.1^44,-1*K.1^28,K.1^44,-1*K.1^44,-1*K.1^20,-1*K.1^4,K.1^4,K.1^20,K.1^4,-1*K.1^28,K.1^28,-1*K.1^4,K.1^44,K.1^28,K.1^3,-1*K.1^27,-1*K.1^45,-1*K.1^39,-1*K.1^33,-1*K.1^45,-1*K.1^27,-1*K.1^39,-1*K.1^33,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^21,-1*K.1^15,-1*K.1^21,-1*K.1^15,K.1^15,K.1^33,K.1^27,K.1^21,K.1^45,K.1^3,K.1^9,K.1^39,K.1^33,K.1^15,K.1^27,K.1^21,K.1^9,K.1^39,K.1^45,-1*K.1^22,K.1^38,-1*K.1^14,K.1^10,K.1^26,-1*K.1^34,K.1^34,-1*K.1^26,-1*K.1^10,K.1^2,-1*K.1^26,K.1^34,K.1^26,-1*K.1^14,-1*K.1^38,-1*K.1^46,-1*K.1^2,-1*K.1^46,K.1^46,-1*K.1^22,K.1^14,K.1^22,K.1^14,K.1^2,K.1^46,-1*K.1^34,-1*K.1^2,K.1^10,-1*K.1^10,K.1^38,K.1^22,-1*K.1^38,-1*K.1^23,-1*K.1^7,-1*K.1^11,K.1^7,-1*K.1^43,K.1^47,-1*K.1^19,K.1^23,K.1^31,K.1^41,K.1^37,K.1,-1*K.1^13,K.1^29,K.1^37,-1*K.1^29,-1*K.1^31,K.1^31,K.1^17,-1*K.1^13,-1*K.1^47,-1*K.1^37,K.1^13,K.1^29,-1*K.1^37,-1*K.1^17,-1*K.1^17,K.1^5,-1*K.1^11,K.1^17,-1*K.1^43,K.1^23,-1*K.1^23,K.1^43,K.1^11,K.1^35,K.1^25,K.1^11,K.1^13,-1*K.1^25,-1*K.1^35,K.1^7,K.1^19,K.1^41,-1*K.1,K.1^5,-1*K.1^41,-1*K.1^41,-1*K.1^31,K.1^47,-1*K.1^19,K.1,K.1^25,-1*K.1^5,K.1^19,-1*K.1^25,K.1^35,-1*K.1^29,K.1^43,-1*K.1^47,-1*K.1,-1*K.1^35,-1*K.1^5,-1*K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,-1*K.1^8,K.1^40,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,K.1^42,-1*K.1^6,K.1^28,-1*K.1^28,K.1^4,K.1^20,-1*K.1^4,K.1^4,K.1^28,K.1^44,-1*K.1^44,-1*K.1^28,-1*K.1^44,K.1^20,-1*K.1^20,K.1^44,-1*K.1^4,-1*K.1^20,-1*K.1^45,K.1^21,K.1^3,K.1^9,K.1^15,K.1^3,K.1^21,K.1^9,K.1^15,K.1^39,K.1^39,K.1^45,K.1^45,K.1^27,K.1^33,K.1^27,K.1^33,-1*K.1^33,-1*K.1^15,-1*K.1^21,-1*K.1^27,-1*K.1^3,-1*K.1^45,-1*K.1^39,-1*K.1^9,-1*K.1^15,-1*K.1^33,-1*K.1^21,-1*K.1^27,-1*K.1^39,-1*K.1^9,-1*K.1^3,K.1^26,-1*K.1^10,K.1^34,-1*K.1^38,-1*K.1^22,K.1^14,-1*K.1^14,K.1^22,K.1^38,-1*K.1^46,K.1^22,-1*K.1^14,-1*K.1^22,K.1^34,K.1^10,K.1^2,K.1^46,K.1^2,-1*K.1^2,K.1^26,-1*K.1^34,-1*K.1^26,-1*K.1^34,-1*K.1^46,-1*K.1^2,K.1^14,K.1^46,-1*K.1^38,K.1^38,-1*K.1^10,-1*K.1^26,K.1^10,K.1^25,K.1^41,K.1^37,-1*K.1^41,K.1^5,-1*K.1,K.1^29,-1*K.1^25,-1*K.1^17,-1*K.1^7,-1*K.1^11,-1*K.1^47,K.1^35,-1*K.1^19,-1*K.1^11,K.1^19,K.1^17,-1*K.1^17,-1*K.1^31,K.1^35,K.1,K.1^11,-1*K.1^35,-1*K.1^19,K.1^11,K.1^31,K.1^31,-1*K.1^43,K.1^37,-1*K.1^31,K.1^5,-1*K.1^25,K.1^25,-1*K.1^5,-1*K.1^37,-1*K.1^13,-1*K.1^23,-1*K.1^37,-1*K.1^35,K.1^23,K.1^13,-1*K.1^41,-1*K.1^29,-1*K.1^7,K.1^47,-1*K.1^43,K.1^7,K.1^7,K.1^17,-1*K.1,K.1^29,-1*K.1^47,-1*K.1^23,K.1^43,-1*K.1^29,K.1^23,-1*K.1^13,K.1^19,-1*K.1^5,K.1,K.1^47,K.1^13,K.1^43,K.1^41,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^40,K.1^8,K.1^40,-1*K.1^8,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,K.1^6,-1*K.1^42,-1*K.1^20,K.1^20,-1*K.1^44,-1*K.1^28,K.1^44,-1*K.1^44,-1*K.1^20,-1*K.1^4,K.1^4,K.1^20,K.1^4,-1*K.1^28,K.1^28,-1*K.1^4,K.1^44,K.1^28,K.1^27,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,K.1^33,K.1^33,-1*K.1^27,-1*K.1^27,K.1^45,-1*K.1^39,K.1^45,-1*K.1^39,K.1^39,K.1^9,-1*K.1^3,-1*K.1^45,K.1^21,K.1^27,-1*K.1^33,-1*K.1^15,K.1^9,K.1^39,-1*K.1^3,-1*K.1^45,-1*K.1^33,-1*K.1^15,K.1^21,K.1^22,-1*K.1^38,K.1^14,-1*K.1^10,-1*K.1^26,K.1^34,-1*K.1^34,K.1^26,K.1^10,-1*K.1^2,K.1^26,-1*K.1^34,-1*K.1^26,K.1^14,K.1^38,K.1^46,K.1^2,K.1^46,-1*K.1^46,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,-1*K.1^46,K.1^34,K.1^2,-1*K.1^10,K.1^10,-1*K.1^38,-1*K.1^22,K.1^38,-1*K.1^47,-1*K.1^31,-1*K.1^35,K.1^31,K.1^19,-1*K.1^23,-1*K.1^43,K.1^47,-1*K.1^7,K.1^17,K.1^13,-1*K.1^25,K.1^37,K.1^5,K.1^13,-1*K.1^5,K.1^7,-1*K.1^7,-1*K.1^41,K.1^37,K.1^23,-1*K.1^13,-1*K.1^37,K.1^5,-1*K.1^13,K.1^41,K.1^41,-1*K.1^29,-1*K.1^35,-1*K.1^41,K.1^19,K.1^47,-1*K.1^47,-1*K.1^19,K.1^35,-1*K.1^11,K.1,K.1^35,-1*K.1^37,-1*K.1,K.1^11,K.1^31,K.1^43,K.1^17,K.1^25,-1*K.1^29,-1*K.1^17,-1*K.1^17,K.1^7,-1*K.1^23,-1*K.1^43,-1*K.1^25,K.1,K.1^29,K.1^43,-1*K.1,-1*K.1^11,-1*K.1^5,-1*K.1^19,K.1^23,K.1^25,K.1^11,K.1^29,-1*K.1^31,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,-1*K.1^8,K.1^40,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,-1*K.1^42,K.1^6,K.1^28,-1*K.1^28,K.1^4,K.1^20,-1*K.1^4,K.1^4,K.1^28,K.1^44,-1*K.1^44,-1*K.1^28,-1*K.1^44,K.1^20,-1*K.1^20,K.1^44,-1*K.1^4,-1*K.1^20,-1*K.1^21,-1*K.1^45,K.1^27,-1*K.1^33,K.1^39,K.1^27,-1*K.1^45,-1*K.1^33,K.1^39,-1*K.1^15,-1*K.1^15,K.1^21,K.1^21,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^39,K.1^45,K.1^3,-1*K.1^27,-1*K.1^21,K.1^15,K.1^33,-1*K.1^39,-1*K.1^9,K.1^45,K.1^3,K.1^15,K.1^33,-1*K.1^27,-1*K.1^26,K.1^10,-1*K.1^34,K.1^38,K.1^22,-1*K.1^14,K.1^14,-1*K.1^22,-1*K.1^38,K.1^46,-1*K.1^22,K.1^14,K.1^22,-1*K.1^34,-1*K.1^10,-1*K.1^2,-1*K.1^46,-1*K.1^2,K.1^2,-1*K.1^26,K.1^34,K.1^26,K.1^34,K.1^46,K.1^2,-1*K.1^14,-1*K.1^46,K.1^38,-1*K.1^38,K.1^10,K.1^26,-1*K.1^10,K.1,K.1^17,K.1^13,-1*K.1^17,-1*K.1^29,K.1^25,K.1^5,-1*K.1,K.1^41,-1*K.1^31,-1*K.1^35,K.1^23,-1*K.1^11,-1*K.1^43,-1*K.1^35,K.1^43,-1*K.1^41,K.1^41,K.1^7,-1*K.1^11,-1*K.1^25,K.1^35,K.1^11,-1*K.1^43,K.1^35,-1*K.1^7,-1*K.1^7,K.1^19,K.1^13,K.1^7,-1*K.1^29,-1*K.1,K.1,K.1^29,-1*K.1^13,K.1^37,-1*K.1^47,-1*K.1^13,K.1^11,K.1^47,-1*K.1^37,-1*K.1^17,-1*K.1^5,-1*K.1^31,-1*K.1^23,K.1^19,K.1^31,K.1^31,-1*K.1^41,K.1^25,K.1^5,K.1^23,-1*K.1^47,-1*K.1^19,-1*K.1^5,K.1^47,K.1^37,K.1^43,K.1^29,-1*K.1^25,-1*K.1^23,-1*K.1^37,-1*K.1^19,K.1^17,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^40,K.1^8,K.1^40,-1*K.1^8,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,K.1^6,-1*K.1^42,-1*K.1^20,K.1^20,-1*K.1^44,-1*K.1^28,K.1^44,-1*K.1^44,-1*K.1^20,-1*K.1^4,K.1^4,K.1^20,K.1^4,-1*K.1^28,K.1^28,-1*K.1^4,K.1^44,K.1^28,-1*K.1^27,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^33,-1*K.1^33,K.1^27,K.1^27,-1*K.1^45,K.1^39,-1*K.1^45,K.1^39,-1*K.1^39,-1*K.1^9,K.1^3,K.1^45,-1*K.1^21,-1*K.1^27,K.1^33,K.1^15,-1*K.1^9,-1*K.1^39,K.1^3,K.1^45,K.1^33,K.1^15,-1*K.1^21,K.1^22,-1*K.1^38,K.1^14,-1*K.1^10,-1*K.1^26,K.1^34,-1*K.1^34,K.1^26,K.1^10,-1*K.1^2,K.1^26,-1*K.1^34,-1*K.1^26,K.1^14,K.1^38,K.1^46,K.1^2,K.1^46,-1*K.1^46,K.1^22,-1*K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,-1*K.1^46,K.1^34,K.1^2,-1*K.1^10,K.1^10,-1*K.1^38,-1*K.1^22,K.1^38,K.1^47,K.1^31,K.1^35,-1*K.1^31,-1*K.1^19,K.1^23,K.1^43,-1*K.1^47,K.1^7,-1*K.1^17,-1*K.1^13,K.1^25,-1*K.1^37,-1*K.1^5,-1*K.1^13,K.1^5,-1*K.1^7,K.1^7,K.1^41,-1*K.1^37,-1*K.1^23,K.1^13,K.1^37,-1*K.1^5,K.1^13,-1*K.1^41,-1*K.1^41,K.1^29,K.1^35,K.1^41,-1*K.1^19,-1*K.1^47,K.1^47,K.1^19,-1*K.1^35,K.1^11,-1*K.1,-1*K.1^35,K.1^37,K.1,-1*K.1^11,-1*K.1^31,-1*K.1^43,-1*K.1^17,-1*K.1^25,K.1^29,K.1^17,K.1^17,-1*K.1^7,K.1^23,K.1^43,K.1^25,-1*K.1,-1*K.1^29,-1*K.1^43,K.1,K.1^11,K.1^5,K.1^19,-1*K.1^23,-1*K.1^25,-1*K.1^11,-1*K.1^29,K.1^31,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,-1*K.1^8,K.1^40,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,-1*K.1^42,K.1^6,K.1^28,-1*K.1^28,K.1^4,K.1^20,-1*K.1^4,K.1^4,K.1^28,K.1^44,-1*K.1^44,-1*K.1^28,-1*K.1^44,K.1^20,-1*K.1^20,K.1^44,-1*K.1^4,-1*K.1^20,K.1^21,K.1^45,-1*K.1^27,K.1^33,-1*K.1^39,-1*K.1^27,K.1^45,K.1^33,-1*K.1^39,K.1^15,K.1^15,-1*K.1^21,-1*K.1^21,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,K.1^39,-1*K.1^45,-1*K.1^3,K.1^27,K.1^21,-1*K.1^15,-1*K.1^33,K.1^39,K.1^9,-1*K.1^45,-1*K.1^3,-1*K.1^15,-1*K.1^33,K.1^27,-1*K.1^26,K.1^10,-1*K.1^34,K.1^38,K.1^22,-1*K.1^14,K.1^14,-1*K.1^22,-1*K.1^38,K.1^46,-1*K.1^22,K.1^14,K.1^22,-1*K.1^34,-1*K.1^10,-1*K.1^2,-1*K.1^46,-1*K.1^2,K.1^2,-1*K.1^26,K.1^34,K.1^26,K.1^34,K.1^46,K.1^2,-1*K.1^14,-1*K.1^46,K.1^38,-1*K.1^38,K.1^10,K.1^26,-1*K.1^10,-1*K.1,-1*K.1^17,-1*K.1^13,K.1^17,K.1^29,-1*K.1^25,-1*K.1^5,K.1,-1*K.1^41,K.1^31,K.1^35,-1*K.1^23,K.1^11,K.1^43,K.1^35,-1*K.1^43,K.1^41,-1*K.1^41,-1*K.1^7,K.1^11,K.1^25,-1*K.1^35,-1*K.1^11,K.1^43,-1*K.1^35,K.1^7,K.1^7,-1*K.1^19,-1*K.1^13,-1*K.1^7,K.1^29,K.1,-1*K.1,-1*K.1^29,K.1^13,-1*K.1^37,K.1^47,K.1^13,-1*K.1^11,-1*K.1^47,K.1^37,K.1^17,K.1^5,K.1^31,K.1^23,-1*K.1^19,-1*K.1^31,-1*K.1^31,K.1^41,-1*K.1^25,-1*K.1^5,-1*K.1^23,K.1^47,K.1^19,K.1^5,-1*K.1^47,-1*K.1^37,-1*K.1^43,-1*K.1^29,K.1^25,K.1^23,K.1^37,K.1^19,-1*K.1^17,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,-1*K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^40,K.1^8,K.1^40,-1*K.1^8,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,K.1^30,-1*K.1^18,K.1^20,-1*K.1^20,K.1^44,K.1^28,-1*K.1^44,K.1^44,K.1^20,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^28,-1*K.1^28,K.1^4,-1*K.1^44,-1*K.1^28,K.1^39,K.1^15,-1*K.1^9,-1*K.1^27,-1*K.1^45,-1*K.1^9,K.1^15,-1*K.1^27,-1*K.1^45,-1*K.1^21,-1*K.1^21,-1*K.1^39,-1*K.1^39,K.1^33,-1*K.1^3,K.1^33,-1*K.1^3,K.1^3,K.1^45,-1*K.1^15,-1*K.1^33,K.1^9,K.1^39,K.1^21,K.1^27,K.1^45,K.1^3,-1*K.1^15,-1*K.1^33,K.1^21,K.1^27,K.1^9,K.1^46,K.1^14,K.1^38,K.1^34,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2,-1*K.1^34,K.1^26,K.1^2,-1*K.1^10,-1*K.1^2,K.1^38,-1*K.1^14,-1*K.1^22,-1*K.1^26,-1*K.1^22,K.1^22,K.1^46,-1*K.1^38,-1*K.1^46,-1*K.1^38,K.1^26,K.1^22,K.1^10,-1*K.1^26,K.1^34,-1*K.1^34,K.1^14,-1*K.1^46,-1*K.1^14,-1*K.1^11,K.1^43,-1*K.1^47,-1*K.1^43,K.1^31,K.1^35,K.1^7,K.1^11,K.1^19,-1*K.1^5,K.1,K.1^13,K.1^25,-1*K.1^41,K.1,K.1^41,-1*K.1^19,K.1^19,K.1^29,K.1^25,-1*K.1^35,-1*K.1,-1*K.1^25,-1*K.1^41,-1*K.1,-1*K.1^29,-1*K.1^29,-1*K.1^17,-1*K.1^47,K.1^29,K.1^31,K.1^11,-1*K.1^11,-1*K.1^31,K.1^47,-1*K.1^23,K.1^37,K.1^47,-1*K.1^25,-1*K.1^37,K.1^23,-1*K.1^43,-1*K.1^7,-1*K.1^5,-1*K.1^13,-1*K.1^17,K.1^5,K.1^5,-1*K.1^19,K.1^35,K.1^7,K.1^13,K.1^37,K.1^17,-1*K.1^7,-1*K.1^37,-1*K.1^23,K.1^41,-1*K.1^31,-1*K.1^35,-1*K.1^13,K.1^23,K.1^17,K.1^43,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,-1*K.1^8,K.1^40,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,-1*K.1^18,K.1^30,-1*K.1^28,K.1^28,-1*K.1^4,-1*K.1^20,K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^44,K.1^44,K.1^28,K.1^44,-1*K.1^20,K.1^20,-1*K.1^44,K.1^4,K.1^20,-1*K.1^9,-1*K.1^33,K.1^39,K.1^21,K.1^3,K.1^39,-1*K.1^33,K.1^21,K.1^3,K.1^27,K.1^27,K.1^9,K.1^9,-1*K.1^15,K.1^45,-1*K.1^15,K.1^45,-1*K.1^45,-1*K.1^3,K.1^33,K.1^15,-1*K.1^39,-1*K.1^9,-1*K.1^27,-1*K.1^21,-1*K.1^3,-1*K.1^45,K.1^33,K.1^15,-1*K.1^27,-1*K.1^21,-1*K.1^39,-1*K.1^2,-1*K.1^34,-1*K.1^10,-1*K.1^14,K.1^46,-1*K.1^38,K.1^38,-1*K.1^46,K.1^14,-1*K.1^22,-1*K.1^46,K.1^38,K.1^46,-1*K.1^10,K.1^34,K.1^26,K.1^22,K.1^26,-1*K.1^26,-1*K.1^2,K.1^10,K.1^2,K.1^10,-1*K.1^22,-1*K.1^26,-1*K.1^38,K.1^22,-1*K.1^14,K.1^14,-1*K.1^34,K.1^2,K.1^34,K.1^37,-1*K.1^5,K.1,K.1^5,-1*K.1^17,-1*K.1^13,-1*K.1^41,-1*K.1^37,-1*K.1^29,K.1^43,-1*K.1^47,-1*K.1^35,-1*K.1^23,K.1^7,-1*K.1^47,-1*K.1^7,K.1^29,-1*K.1^29,-1*K.1^19,-1*K.1^23,K.1^13,K.1^47,K.1^23,K.1^7,K.1^47,K.1^19,K.1^19,K.1^31,K.1,-1*K.1^19,-1*K.1^17,-1*K.1^37,K.1^37,K.1^17,-1*K.1,K.1^25,-1*K.1^11,-1*K.1,K.1^23,K.1^11,-1*K.1^25,K.1^5,K.1^41,K.1^43,K.1^35,K.1^31,-1*K.1^43,-1*K.1^43,K.1^29,-1*K.1^13,-1*K.1^41,-1*K.1^35,-1*K.1^11,-1*K.1^31,K.1^41,K.1^11,K.1^25,-1*K.1^7,K.1^17,K.1^13,K.1^35,-1*K.1^25,-1*K.1^31,-1*K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,-1*K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^40,K.1^8,K.1^40,-1*K.1^8,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,K.1^30,-1*K.1^18,K.1^20,-1*K.1^20,K.1^44,K.1^28,-1*K.1^44,K.1^44,K.1^20,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^28,-1*K.1^28,K.1^4,-1*K.1^44,-1*K.1^28,-1*K.1^39,-1*K.1^15,K.1^9,K.1^27,K.1^45,K.1^9,-1*K.1^15,K.1^27,K.1^45,K.1^21,K.1^21,K.1^39,K.1^39,-1*K.1^33,K.1^3,-1*K.1^33,K.1^3,-1*K.1^3,-1*K.1^45,K.1^15,K.1^33,-1*K.1^9,-1*K.1^39,-1*K.1^21,-1*K.1^27,-1*K.1^45,-1*K.1^3,K.1^15,K.1^33,-1*K.1^21,-1*K.1^27,-1*K.1^9,K.1^46,K.1^14,K.1^38,K.1^34,-1*K.1^2,K.1^10,-1*K.1^10,K.1^2,-1*K.1^34,K.1^26,K.1^2,-1*K.1^10,-1*K.1^2,K.1^38,-1*K.1^14,-1*K.1^22,-1*K.1^26,-1*K.1^22,K.1^22,K.1^46,-1*K.1^38,-1*K.1^46,-1*K.1^38,K.1^26,K.1^22,K.1^10,-1*K.1^26,K.1^34,-1*K.1^34,K.1^14,-1*K.1^46,-1*K.1^14,K.1^11,-1*K.1^43,K.1^47,K.1^43,-1*K.1^31,-1*K.1^35,-1*K.1^7,-1*K.1^11,-1*K.1^19,K.1^5,-1*K.1,-1*K.1^13,-1*K.1^25,K.1^41,-1*K.1,-1*K.1^41,K.1^19,-1*K.1^19,-1*K.1^29,-1*K.1^25,K.1^35,K.1,K.1^25,K.1^41,K.1,K.1^29,K.1^29,K.1^17,K.1^47,-1*K.1^29,-1*K.1^31,-1*K.1^11,K.1^11,K.1^31,-1*K.1^47,K.1^23,-1*K.1^37,-1*K.1^47,K.1^25,K.1^37,-1*K.1^23,K.1^43,K.1^7,K.1^5,K.1^13,K.1^17,-1*K.1^5,-1*K.1^5,K.1^19,-1*K.1^35,-1*K.1^7,-1*K.1^13,-1*K.1^37,-1*K.1^17,K.1^7,K.1^37,K.1^23,-1*K.1^41,K.1^31,K.1^35,K.1^13,-1*K.1^23,-1*K.1^17,-1*K.1^43,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,-1*K.1^8,K.1^40,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,-1*K.1^18,K.1^30,-1*K.1^28,K.1^28,-1*K.1^4,-1*K.1^20,K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^44,K.1^44,K.1^28,K.1^44,-1*K.1^20,K.1^20,-1*K.1^44,K.1^4,K.1^20,K.1^9,K.1^33,-1*K.1^39,-1*K.1^21,-1*K.1^3,-1*K.1^39,K.1^33,-1*K.1^21,-1*K.1^3,-1*K.1^27,-1*K.1^27,-1*K.1^9,-1*K.1^9,K.1^15,-1*K.1^45,K.1^15,-1*K.1^45,K.1^45,K.1^3,-1*K.1^33,-1*K.1^15,K.1^39,K.1^9,K.1^27,K.1^21,K.1^3,K.1^45,-1*K.1^33,-1*K.1^15,K.1^27,K.1^21,K.1^39,-1*K.1^2,-1*K.1^34,-1*K.1^10,-1*K.1^14,K.1^46,-1*K.1^38,K.1^38,-1*K.1^46,K.1^14,-1*K.1^22,-1*K.1^46,K.1^38,K.1^46,-1*K.1^10,K.1^34,K.1^26,K.1^22,K.1^26,-1*K.1^26,-1*K.1^2,K.1^10,K.1^2,K.1^10,-1*K.1^22,-1*K.1^26,-1*K.1^38,K.1^22,-1*K.1^14,K.1^14,-1*K.1^34,K.1^2,K.1^34,-1*K.1^37,K.1^5,-1*K.1,-1*K.1^5,K.1^17,K.1^13,K.1^41,K.1^37,K.1^29,-1*K.1^43,K.1^47,K.1^35,K.1^23,-1*K.1^7,K.1^47,K.1^7,-1*K.1^29,K.1^29,K.1^19,K.1^23,-1*K.1^13,-1*K.1^47,-1*K.1^23,-1*K.1^7,-1*K.1^47,-1*K.1^19,-1*K.1^19,-1*K.1^31,-1*K.1,K.1^19,K.1^17,K.1^37,-1*K.1^37,-1*K.1^17,K.1,-1*K.1^25,K.1^11,K.1,-1*K.1^23,-1*K.1^11,K.1^25,-1*K.1^5,-1*K.1^41,-1*K.1^43,-1*K.1^35,-1*K.1^31,K.1^43,K.1^43,-1*K.1^29,K.1^13,K.1^41,K.1^35,K.1^11,K.1^31,-1*K.1^41,-1*K.1^11,-1*K.1^25,K.1^7,-1*K.1^17,-1*K.1^13,-1*K.1^35,K.1^25,K.1^31,K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,-1*K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^40,K.1^8,K.1^40,-1*K.1^8,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,-1*K.1^30,K.1^18,K.1^20,-1*K.1^20,K.1^44,K.1^28,-1*K.1^44,K.1^44,K.1^20,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^28,-1*K.1^28,K.1^4,-1*K.1^44,-1*K.1^28,-1*K.1^15,K.1^39,K.1^33,K.1^3,-1*K.1^21,K.1^33,K.1^39,K.1^3,-1*K.1^21,K.1^45,K.1^45,K.1^15,K.1^15,K.1^9,-1*K.1^27,K.1^9,-1*K.1^27,K.1^27,K.1^21,-1*K.1^39,-1*K.1^9,-1*K.1^33,-1*K.1^15,-1*K.1^45,-1*K.1^3,K.1^21,K.1^27,-1*K.1^39,-1*K.1^9,-1*K.1^45,-1*K.1^3,-1*K.1^33,-1*K.1^46,-1*K.1^14,-1*K.1^38,-1*K.1^34,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,K.1^34,-1*K.1^26,-1*K.1^2,K.1^10,K.1^2,-1*K.1^38,K.1^14,K.1^22,K.1^26,K.1^22,-1*K.1^22,-1*K.1^46,K.1^38,K.1^46,K.1^38,-1*K.1^26,-1*K.1^22,-1*K.1^10,K.1^26,-1*K.1^34,K.1^34,-1*K.1^14,K.1^46,K.1^14,-1*K.1^35,-1*K.1^19,K.1^23,K.1^19,-1*K.1^7,-1*K.1^11,K.1^31,K.1^35,K.1^43,K.1^29,-1*K.1^25,-1*K.1^37,K.1,-1*K.1^17,-1*K.1^25,K.1^17,-1*K.1^43,K.1^43,K.1^5,K.1,K.1^11,K.1^25,-1*K.1,-1*K.1^17,K.1^25,-1*K.1^5,-1*K.1^5,K.1^41,K.1^23,K.1^5,-1*K.1^7,K.1^35,-1*K.1^35,K.1^7,-1*K.1^23,-1*K.1^47,K.1^13,-1*K.1^23,-1*K.1,-1*K.1^13,K.1^47,K.1^19,-1*K.1^31,K.1^29,K.1^37,K.1^41,-1*K.1^29,-1*K.1^29,-1*K.1^43,-1*K.1^11,K.1^31,-1*K.1^37,K.1^13,-1*K.1^41,-1*K.1^31,-1*K.1^13,-1*K.1^47,K.1^17,K.1^7,K.1^11,K.1^37,K.1^47,-1*K.1^41,-1*K.1^19,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,-1*K.1^8,K.1^40,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,K.1^18,-1*K.1^30,-1*K.1^28,K.1^28,-1*K.1^4,-1*K.1^20,K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^44,K.1^44,K.1^28,K.1^44,-1*K.1^20,K.1^20,-1*K.1^44,K.1^4,K.1^20,K.1^33,-1*K.1^9,-1*K.1^15,-1*K.1^45,K.1^27,-1*K.1^15,-1*K.1^9,-1*K.1^45,K.1^27,-1*K.1^3,-1*K.1^3,-1*K.1^33,-1*K.1^33,-1*K.1^39,K.1^21,-1*K.1^39,K.1^21,-1*K.1^21,-1*K.1^27,K.1^9,K.1^39,K.1^15,K.1^33,K.1^3,K.1^45,-1*K.1^27,-1*K.1^21,K.1^9,K.1^39,K.1^3,K.1^45,K.1^15,K.1^2,K.1^34,K.1^10,K.1^14,-1*K.1^46,K.1^38,-1*K.1^38,K.1^46,-1*K.1^14,K.1^22,K.1^46,-1*K.1^38,-1*K.1^46,K.1^10,-1*K.1^34,-1*K.1^26,-1*K.1^22,-1*K.1^26,K.1^26,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^22,K.1^26,K.1^38,-1*K.1^22,K.1^14,-1*K.1^14,K.1^34,-1*K.1^2,-1*K.1^34,K.1^13,K.1^29,-1*K.1^25,-1*K.1^29,K.1^41,K.1^37,-1*K.1^17,-1*K.1^13,-1*K.1^5,-1*K.1^19,K.1^23,K.1^11,-1*K.1^47,K.1^31,K.1^23,-1*K.1^31,K.1^5,-1*K.1^5,-1*K.1^43,-1*K.1^47,-1*K.1^37,-1*K.1^23,K.1^47,K.1^31,-1*K.1^23,K.1^43,K.1^43,-1*K.1^7,-1*K.1^25,-1*K.1^43,K.1^41,-1*K.1^13,K.1^13,-1*K.1^41,K.1^25,K.1,-1*K.1^35,K.1^25,K.1^47,K.1^35,-1*K.1,-1*K.1^29,K.1^17,-1*K.1^19,-1*K.1^11,-1*K.1^7,K.1^19,K.1^19,K.1^5,K.1^37,-1*K.1^17,K.1^11,-1*K.1^35,K.1^7,K.1^17,K.1^35,K.1,-1*K.1^31,-1*K.1^41,-1*K.1^37,-1*K.1^11,-1*K.1,K.1^7,K.1^29,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,-1*K.1^40,-1*K.1^8,K.1^8,K.1^40,-1*K.1^40,K.1^8,K.1^40,-1*K.1^8,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,-1*K.1^30,K.1^18,K.1^20,-1*K.1^20,K.1^44,K.1^28,-1*K.1^44,K.1^44,K.1^20,K.1^4,-1*K.1^4,-1*K.1^20,-1*K.1^4,K.1^28,-1*K.1^28,K.1^4,-1*K.1^44,-1*K.1^28,K.1^15,-1*K.1^39,-1*K.1^33,-1*K.1^3,K.1^21,-1*K.1^33,-1*K.1^39,-1*K.1^3,K.1^21,-1*K.1^45,-1*K.1^45,-1*K.1^15,-1*K.1^15,-1*K.1^9,K.1^27,-1*K.1^9,K.1^27,-1*K.1^27,-1*K.1^21,K.1^39,K.1^9,K.1^33,K.1^15,K.1^45,K.1^3,-1*K.1^21,-1*K.1^27,K.1^39,K.1^9,K.1^45,K.1^3,K.1^33,-1*K.1^46,-1*K.1^14,-1*K.1^38,-1*K.1^34,K.1^2,-1*K.1^10,K.1^10,-1*K.1^2,K.1^34,-1*K.1^26,-1*K.1^2,K.1^10,K.1^2,-1*K.1^38,K.1^14,K.1^22,K.1^26,K.1^22,-1*K.1^22,-1*K.1^46,K.1^38,K.1^46,K.1^38,-1*K.1^26,-1*K.1^22,-1*K.1^10,K.1^26,-1*K.1^34,K.1^34,-1*K.1^14,K.1^46,K.1^14,K.1^35,K.1^19,-1*K.1^23,-1*K.1^19,K.1^7,K.1^11,-1*K.1^31,-1*K.1^35,-1*K.1^43,-1*K.1^29,K.1^25,K.1^37,-1*K.1,K.1^17,K.1^25,-1*K.1^17,K.1^43,-1*K.1^43,-1*K.1^5,-1*K.1,-1*K.1^11,-1*K.1^25,K.1,K.1^17,-1*K.1^25,K.1^5,K.1^5,-1*K.1^41,-1*K.1^23,-1*K.1^5,K.1^7,-1*K.1^35,K.1^35,-1*K.1^7,K.1^23,K.1^47,-1*K.1^13,K.1^23,K.1,K.1^13,-1*K.1^47,-1*K.1^19,K.1^31,-1*K.1^29,-1*K.1^37,-1*K.1^41,K.1^29,K.1^29,K.1^43,K.1^11,-1*K.1^31,K.1^37,-1*K.1^13,K.1^41,K.1^31,K.1^13,K.1^47,-1*K.1^17,-1*K.1^7,-1*K.1^11,-1*K.1^37,-1*K.1^47,K.1^41,K.1^19,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,K.1^8,K.1^40,-1*K.1^40,-1*K.1^8,K.1^8,-1*K.1^40,-1*K.1^8,K.1^40,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,K.1^18,-1*K.1^30,-1*K.1^28,K.1^28,-1*K.1^4,-1*K.1^20,K.1^4,-1*K.1^4,-1*K.1^28,-1*K.1^44,K.1^44,K.1^28,K.1^44,-1*K.1^20,K.1^20,-1*K.1^44,K.1^4,K.1^20,-1*K.1^33,K.1^9,K.1^15,K.1^45,-1*K.1^27,K.1^15,K.1^9,K.1^45,-1*K.1^27,K.1^3,K.1^3,K.1^33,K.1^33,K.1^39,-1*K.1^21,K.1^39,-1*K.1^21,K.1^21,K.1^27,-1*K.1^9,-1*K.1^39,-1*K.1^15,-1*K.1^33,-1*K.1^3,-1*K.1^45,K.1^27,K.1^21,-1*K.1^9,-1*K.1^39,-1*K.1^3,-1*K.1^45,-1*K.1^15,K.1^2,K.1^34,K.1^10,K.1^14,-1*K.1^46,K.1^38,-1*K.1^38,K.1^46,-1*K.1^14,K.1^22,K.1^46,-1*K.1^38,-1*K.1^46,K.1^10,-1*K.1^34,-1*K.1^26,-1*K.1^22,-1*K.1^26,K.1^26,K.1^2,-1*K.1^10,-1*K.1^2,-1*K.1^10,K.1^22,K.1^26,K.1^38,-1*K.1^22,K.1^14,-1*K.1^14,K.1^34,-1*K.1^2,-1*K.1^34,-1*K.1^13,-1*K.1^29,K.1^25,K.1^29,-1*K.1^41,-1*K.1^37,K.1^17,K.1^13,K.1^5,K.1^19,-1*K.1^23,-1*K.1^11,K.1^47,-1*K.1^31,-1*K.1^23,K.1^31,-1*K.1^5,K.1^5,K.1^43,K.1^47,K.1^37,K.1^23,-1*K.1^47,-1*K.1^31,K.1^23,-1*K.1^43,-1*K.1^43,K.1^7,K.1^25,K.1^43,-1*K.1^41,K.1^13,-1*K.1^13,K.1^41,-1*K.1^25,-1*K.1,K.1^35,-1*K.1^25,-1*K.1^47,-1*K.1^35,K.1,K.1^29,-1*K.1^17,K.1^19,K.1^11,K.1^7,-1*K.1^19,-1*K.1^19,-1*K.1^5,-1*K.1^37,K.1^17,-1*K.1^11,K.1^35,-1*K.1^7,-1*K.1^17,-1*K.1^35,-1*K.1,K.1^31,K.1^41,K.1^37,K.1^11,K.1,-1*K.1^7,-1*K.1^29,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,-1*K.1^40,K.1^8,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,K.1^42,-1*K.1^6,-1*K.1^44,K.1^44,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^20,-1*K.1^44,-1*K.1^28,K.1^28,K.1^44,K.1^28,-1*K.1^4,K.1^4,-1*K.1^28,K.1^20,K.1^4,K.1^45,-1*K.1^21,-1*K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^3,-1*K.1^21,-1*K.1^9,-1*K.1^15,-1*K.1^39,-1*K.1^39,-1*K.1^45,-1*K.1^45,-1*K.1^27,-1*K.1^33,-1*K.1^27,-1*K.1^33,K.1^33,K.1^15,K.1^21,K.1^27,K.1^3,K.1^45,K.1^39,K.1^9,K.1^15,K.1^33,K.1^21,K.1^27,K.1^39,K.1^9,K.1^3,-1*K.1^10,K.1^26,K.1^2,K.1^22,K.1^38,K.1^46,-1*K.1^46,-1*K.1^38,-1*K.1^22,-1*K.1^14,-1*K.1^38,-1*K.1^46,K.1^38,K.1^2,-1*K.1^26,K.1^34,K.1^14,K.1^34,-1*K.1^34,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^14,-1*K.1^34,K.1^46,K.1^14,K.1^22,-1*K.1^22,K.1^26,K.1^10,-1*K.1^26,K.1^41,K.1^25,-1*K.1^5,-1*K.1^25,-1*K.1^37,-1*K.1^17,K.1^13,-1*K.1^41,-1*K.1,-1*K.1^23,K.1^43,-1*K.1^31,K.1^19,-1*K.1^35,K.1^43,K.1^35,K.1,-1*K.1,-1*K.1^47,K.1^19,K.1^17,-1*K.1^43,-1*K.1^19,-1*K.1^35,-1*K.1^43,K.1^47,K.1^47,K.1^11,-1*K.1^5,-1*K.1^47,-1*K.1^37,-1*K.1^41,K.1^41,K.1^37,K.1^5,-1*K.1^29,-1*K.1^7,K.1^5,-1*K.1^19,K.1^7,K.1^29,-1*K.1^25,-1*K.1^13,-1*K.1^23,K.1^31,K.1^11,K.1^23,K.1^23,K.1,-1*K.1^17,K.1^13,-1*K.1^31,-1*K.1^7,-1*K.1^11,-1*K.1^13,K.1^7,-1*K.1^29,K.1^35,K.1^37,K.1^17,K.1^31,K.1^29,-1*K.1^11,K.1^25,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^8,K.1^40,K.1^8,-1*K.1^40,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,-1*K.1^6,K.1^42,K.1^4,-1*K.1^4,K.1^28,K.1^44,-1*K.1^28,K.1^28,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^44,-1*K.1^44,K.1^20,-1*K.1^28,-1*K.1^44,-1*K.1^3,K.1^27,K.1^45,K.1^39,K.1^33,K.1^45,K.1^27,K.1^39,K.1^33,K.1^9,K.1^9,K.1^3,K.1^3,K.1^21,K.1^15,K.1^21,K.1^15,-1*K.1^15,-1*K.1^33,-1*K.1^27,-1*K.1^21,-1*K.1^45,-1*K.1^3,-1*K.1^9,-1*K.1^39,-1*K.1^33,-1*K.1^15,-1*K.1^27,-1*K.1^21,-1*K.1^9,-1*K.1^39,-1*K.1^45,K.1^38,-1*K.1^22,-1*K.1^46,-1*K.1^26,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,K.1^26,K.1^34,K.1^10,K.1^2,-1*K.1^10,-1*K.1^46,K.1^22,-1*K.1^14,-1*K.1^34,-1*K.1^14,K.1^14,K.1^38,K.1^46,-1*K.1^38,K.1^46,K.1^34,K.1^14,-1*K.1^2,-1*K.1^34,-1*K.1^26,K.1^26,-1*K.1^22,-1*K.1^38,K.1^22,-1*K.1^7,-1*K.1^23,K.1^43,K.1^23,K.1^11,K.1^31,-1*K.1^35,K.1^7,K.1^47,K.1^25,-1*K.1^5,K.1^17,-1*K.1^29,K.1^13,-1*K.1^5,-1*K.1^13,-1*K.1^47,K.1^47,K.1,-1*K.1^29,-1*K.1^31,K.1^5,K.1^29,K.1^13,K.1^5,-1*K.1,-1*K.1,-1*K.1^37,K.1^43,K.1,K.1^11,K.1^7,-1*K.1^7,-1*K.1^11,-1*K.1^43,K.1^19,K.1^41,-1*K.1^43,K.1^29,-1*K.1^41,-1*K.1^19,K.1^23,K.1^35,K.1^25,-1*K.1^17,-1*K.1^37,-1*K.1^25,-1*K.1^25,-1*K.1^47,K.1^31,-1*K.1^35,K.1^17,K.1^41,K.1^37,K.1^35,-1*K.1^41,K.1^19,-1*K.1^13,-1*K.1^11,-1*K.1^31,-1*K.1^17,-1*K.1^19,K.1^37,-1*K.1^23,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,-1*K.1^40,K.1^8,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,K.1^42,-1*K.1^6,-1*K.1^44,K.1^44,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^20,-1*K.1^44,-1*K.1^28,K.1^28,K.1^44,K.1^28,-1*K.1^4,K.1^4,-1*K.1^28,K.1^20,K.1^4,-1*K.1^45,K.1^21,K.1^3,K.1^9,K.1^15,K.1^3,K.1^21,K.1^9,K.1^15,K.1^39,K.1^39,K.1^45,K.1^45,K.1^27,K.1^33,K.1^27,K.1^33,-1*K.1^33,-1*K.1^15,-1*K.1^21,-1*K.1^27,-1*K.1^3,-1*K.1^45,-1*K.1^39,-1*K.1^9,-1*K.1^15,-1*K.1^33,-1*K.1^21,-1*K.1^27,-1*K.1^39,-1*K.1^9,-1*K.1^3,-1*K.1^10,K.1^26,K.1^2,K.1^22,K.1^38,K.1^46,-1*K.1^46,-1*K.1^38,-1*K.1^22,-1*K.1^14,-1*K.1^38,-1*K.1^46,K.1^38,K.1^2,-1*K.1^26,K.1^34,K.1^14,K.1^34,-1*K.1^34,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^2,-1*K.1^14,-1*K.1^34,K.1^46,K.1^14,K.1^22,-1*K.1^22,K.1^26,K.1^10,-1*K.1^26,-1*K.1^41,-1*K.1^25,K.1^5,K.1^25,K.1^37,K.1^17,-1*K.1^13,K.1^41,K.1,K.1^23,-1*K.1^43,K.1^31,-1*K.1^19,K.1^35,-1*K.1^43,-1*K.1^35,-1*K.1,K.1,K.1^47,-1*K.1^19,-1*K.1^17,K.1^43,K.1^19,K.1^35,K.1^43,-1*K.1^47,-1*K.1^47,-1*K.1^11,K.1^5,K.1^47,K.1^37,K.1^41,-1*K.1^41,-1*K.1^37,-1*K.1^5,K.1^29,K.1^7,-1*K.1^5,K.1^19,-1*K.1^7,-1*K.1^29,K.1^25,K.1^13,K.1^23,-1*K.1^31,-1*K.1^11,-1*K.1^23,-1*K.1^23,-1*K.1,K.1^17,-1*K.1^13,K.1^31,K.1^7,K.1^11,K.1^13,-1*K.1^7,K.1^29,-1*K.1^35,-1*K.1^37,-1*K.1^17,-1*K.1^31,-1*K.1^29,K.1^11,-1*K.1^25,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^8,K.1^40,K.1^8,-1*K.1^40,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,-1*K.1^6,K.1^42,K.1^4,-1*K.1^4,K.1^28,K.1^44,-1*K.1^28,K.1^28,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^44,-1*K.1^44,K.1^20,-1*K.1^28,-1*K.1^44,K.1^3,-1*K.1^27,-1*K.1^45,-1*K.1^39,-1*K.1^33,-1*K.1^45,-1*K.1^27,-1*K.1^39,-1*K.1^33,-1*K.1^9,-1*K.1^9,-1*K.1^3,-1*K.1^3,-1*K.1^21,-1*K.1^15,-1*K.1^21,-1*K.1^15,K.1^15,K.1^33,K.1^27,K.1^21,K.1^45,K.1^3,K.1^9,K.1^39,K.1^33,K.1^15,K.1^27,K.1^21,K.1^9,K.1^39,K.1^45,K.1^38,-1*K.1^22,-1*K.1^46,-1*K.1^26,-1*K.1^10,-1*K.1^2,K.1^2,K.1^10,K.1^26,K.1^34,K.1^10,K.1^2,-1*K.1^10,-1*K.1^46,K.1^22,-1*K.1^14,-1*K.1^34,-1*K.1^14,K.1^14,K.1^38,K.1^46,-1*K.1^38,K.1^46,K.1^34,K.1^14,-1*K.1^2,-1*K.1^34,-1*K.1^26,K.1^26,-1*K.1^22,-1*K.1^38,K.1^22,K.1^7,K.1^23,-1*K.1^43,-1*K.1^23,-1*K.1^11,-1*K.1^31,K.1^35,-1*K.1^7,-1*K.1^47,-1*K.1^25,K.1^5,-1*K.1^17,K.1^29,-1*K.1^13,K.1^5,K.1^13,K.1^47,-1*K.1^47,-1*K.1,K.1^29,K.1^31,-1*K.1^5,-1*K.1^29,-1*K.1^13,-1*K.1^5,K.1,K.1,K.1^37,-1*K.1^43,-1*K.1,-1*K.1^11,-1*K.1^7,K.1^7,K.1^11,K.1^43,-1*K.1^19,-1*K.1^41,K.1^43,-1*K.1^29,K.1^41,K.1^19,-1*K.1^23,-1*K.1^35,-1*K.1^25,K.1^17,K.1^37,K.1^25,K.1^25,K.1^47,-1*K.1^31,K.1^35,-1*K.1^17,-1*K.1^41,-1*K.1^37,-1*K.1^35,K.1^41,-1*K.1^19,K.1^13,K.1^11,K.1^31,K.1^17,K.1^19,-1*K.1^37,K.1^23,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,-1*K.1^40,K.1^8,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,-1*K.1^42,K.1^6,-1*K.1^44,K.1^44,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^20,-1*K.1^44,-1*K.1^28,K.1^28,K.1^44,K.1^28,-1*K.1^4,K.1^4,-1*K.1^28,K.1^20,K.1^4,-1*K.1^21,-1*K.1^45,K.1^27,-1*K.1^33,K.1^39,K.1^27,-1*K.1^45,-1*K.1^33,K.1^39,-1*K.1^15,-1*K.1^15,K.1^21,K.1^21,-1*K.1^3,K.1^9,-1*K.1^3,K.1^9,-1*K.1^9,-1*K.1^39,K.1^45,K.1^3,-1*K.1^27,-1*K.1^21,K.1^15,K.1^33,-1*K.1^39,-1*K.1^9,K.1^45,K.1^3,K.1^15,K.1^33,-1*K.1^27,K.1^10,-1*K.1^26,-1*K.1^2,-1*K.1^22,-1*K.1^38,-1*K.1^46,K.1^46,K.1^38,K.1^22,K.1^14,K.1^38,K.1^46,-1*K.1^38,-1*K.1^2,K.1^26,-1*K.1^34,-1*K.1^14,-1*K.1^34,K.1^34,K.1^10,K.1^2,-1*K.1^10,K.1^2,K.1^14,K.1^34,-1*K.1^46,-1*K.1^14,-1*K.1^22,K.1^22,-1*K.1^26,-1*K.1^10,K.1^26,-1*K.1^17,-1*K.1,-1*K.1^29,K.1,K.1^13,-1*K.1^41,K.1^37,K.1^17,-1*K.1^25,K.1^47,K.1^19,-1*K.1^7,-1*K.1^43,-1*K.1^11,K.1^19,K.1^11,K.1^25,-1*K.1^25,-1*K.1^23,-1*K.1^43,K.1^41,-1*K.1^19,K.1^43,-1*K.1^11,-1*K.1^19,K.1^23,K.1^23,-1*K.1^35,-1*K.1^29,-1*K.1^23,K.1^13,K.1^17,-1*K.1^17,-1*K.1^13,K.1^29,K.1^5,K.1^31,K.1^29,K.1^43,-1*K.1^31,-1*K.1^5,K.1,-1*K.1^37,K.1^47,K.1^7,-1*K.1^35,-1*K.1^47,-1*K.1^47,K.1^25,-1*K.1^41,K.1^37,-1*K.1^7,K.1^31,K.1^35,-1*K.1^37,-1*K.1^31,K.1^5,K.1^11,-1*K.1^13,K.1^41,K.1^7,-1*K.1^5,K.1^35,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^8,K.1^40,K.1^8,-1*K.1^40,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,K.1^6,-1*K.1^42,K.1^4,-1*K.1^4,K.1^28,K.1^44,-1*K.1^28,K.1^28,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^44,-1*K.1^44,K.1^20,-1*K.1^28,-1*K.1^44,K.1^27,K.1^3,-1*K.1^21,K.1^15,-1*K.1^9,-1*K.1^21,K.1^3,K.1^15,-1*K.1^9,K.1^33,K.1^33,-1*K.1^27,-1*K.1^27,K.1^45,-1*K.1^39,K.1^45,-1*K.1^39,K.1^39,K.1^9,-1*K.1^3,-1*K.1^45,K.1^21,K.1^27,-1*K.1^33,-1*K.1^15,K.1^9,K.1^39,-1*K.1^3,-1*K.1^45,-1*K.1^33,-1*K.1^15,K.1^21,-1*K.1^38,K.1^22,K.1^46,K.1^26,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^26,-1*K.1^34,-1*K.1^10,-1*K.1^2,K.1^10,K.1^46,-1*K.1^22,K.1^14,K.1^34,K.1^14,-1*K.1^14,-1*K.1^38,-1*K.1^46,K.1^38,-1*K.1^46,-1*K.1^34,-1*K.1^14,K.1^2,K.1^34,K.1^26,-1*K.1^26,K.1^22,K.1^38,-1*K.1^22,K.1^31,K.1^47,K.1^19,-1*K.1^47,-1*K.1^35,K.1^7,-1*K.1^11,-1*K.1^31,K.1^23,-1*K.1,-1*K.1^29,K.1^41,K.1^5,K.1^37,-1*K.1^29,-1*K.1^37,-1*K.1^23,K.1^23,K.1^25,K.1^5,-1*K.1^7,K.1^29,-1*K.1^5,K.1^37,K.1^29,-1*K.1^25,-1*K.1^25,K.1^13,K.1^19,K.1^25,-1*K.1^35,-1*K.1^31,K.1^31,K.1^35,-1*K.1^19,-1*K.1^43,-1*K.1^17,-1*K.1^19,-1*K.1^5,K.1^17,K.1^43,-1*K.1^47,K.1^11,-1*K.1,-1*K.1^41,K.1^13,K.1,K.1,-1*K.1^23,K.1^7,-1*K.1^11,K.1^41,-1*K.1^17,-1*K.1^13,K.1^11,K.1^17,-1*K.1^43,-1*K.1^37,K.1^35,-1*K.1^7,-1*K.1^41,K.1^43,-1*K.1^13,K.1^47,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,-1*K.1^12,K.1^36,-1*K.1^36,K.1^12,-1*K.1^36,K.1^12,K.1^36,-1*K.1^12,K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,-1*K.1^40,K.1^8,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,-1*K.1^42,K.1^6,-1*K.1^44,K.1^44,-1*K.1^20,-1*K.1^4,K.1^20,-1*K.1^20,-1*K.1^44,-1*K.1^28,K.1^28,K.1^44,K.1^28,-1*K.1^4,K.1^4,-1*K.1^28,K.1^20,K.1^4,K.1^21,K.1^45,-1*K.1^27,K.1^33,-1*K.1^39,-1*K.1^27,K.1^45,K.1^33,-1*K.1^39,K.1^15,K.1^15,-1*K.1^21,-1*K.1^21,K.1^3,-1*K.1^9,K.1^3,-1*K.1^9,K.1^9,K.1^39,-1*K.1^45,-1*K.1^3,K.1^27,K.1^21,-1*K.1^15,-1*K.1^33,K.1^39,K.1^9,-1*K.1^45,-1*K.1^3,-1*K.1^15,-1*K.1^33,K.1^27,K.1^10,-1*K.1^26,-1*K.1^2,-1*K.1^22,-1*K.1^38,-1*K.1^46,K.1^46,K.1^38,K.1^22,K.1^14,K.1^38,K.1^46,-1*K.1^38,-1*K.1^2,K.1^26,-1*K.1^34,-1*K.1^14,-1*K.1^34,K.1^34,K.1^10,K.1^2,-1*K.1^10,K.1^2,K.1^14,K.1^34,-1*K.1^46,-1*K.1^14,-1*K.1^22,K.1^22,-1*K.1^26,-1*K.1^10,K.1^26,K.1^17,K.1,K.1^29,-1*K.1,-1*K.1^13,K.1^41,-1*K.1^37,-1*K.1^17,K.1^25,-1*K.1^47,-1*K.1^19,K.1^7,K.1^43,K.1^11,-1*K.1^19,-1*K.1^11,-1*K.1^25,K.1^25,K.1^23,K.1^43,-1*K.1^41,K.1^19,-1*K.1^43,K.1^11,K.1^19,-1*K.1^23,-1*K.1^23,K.1^35,K.1^29,K.1^23,-1*K.1^13,-1*K.1^17,K.1^17,K.1^13,-1*K.1^29,-1*K.1^5,-1*K.1^31,-1*K.1^29,-1*K.1^43,K.1^31,K.1^5,-1*K.1,K.1^37,-1*K.1^47,-1*K.1^7,K.1^35,K.1^47,K.1^47,-1*K.1^25,K.1^41,-1*K.1^37,K.1^7,-1*K.1^31,-1*K.1^35,K.1^37,K.1^31,-1*K.1^5,-1*K.1^11,K.1^13,-1*K.1^41,-1*K.1^7,K.1^5,-1*K.1^35,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,K.1^36,-1*K.1^12,K.1^12,-1*K.1^36,K.1^12,-1*K.1^36,-1*K.1^12,K.1^36,-1*K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^8,K.1^40,K.1^8,-1*K.1^40,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,K.1^6,-1*K.1^42,K.1^4,-1*K.1^4,K.1^28,K.1^44,-1*K.1^28,K.1^28,K.1^4,K.1^20,-1*K.1^20,-1*K.1^4,-1*K.1^20,K.1^44,-1*K.1^44,K.1^20,-1*K.1^28,-1*K.1^44,-1*K.1^27,-1*K.1^3,K.1^21,-1*K.1^15,K.1^9,K.1^21,-1*K.1^3,-1*K.1^15,K.1^9,-1*K.1^33,-1*K.1^33,K.1^27,K.1^27,-1*K.1^45,K.1^39,-1*K.1^45,K.1^39,-1*K.1^39,-1*K.1^9,K.1^3,K.1^45,-1*K.1^21,-1*K.1^27,K.1^33,K.1^15,-1*K.1^9,-1*K.1^39,K.1^3,K.1^45,K.1^33,K.1^15,-1*K.1^21,-1*K.1^38,K.1^22,K.1^46,K.1^26,K.1^10,K.1^2,-1*K.1^2,-1*K.1^10,-1*K.1^26,-1*K.1^34,-1*K.1^10,-1*K.1^2,K.1^10,K.1^46,-1*K.1^22,K.1^14,K.1^34,K.1^14,-1*K.1^14,-1*K.1^38,-1*K.1^46,K.1^38,-1*K.1^46,-1*K.1^34,-1*K.1^14,K.1^2,K.1^34,K.1^26,-1*K.1^26,K.1^22,K.1^38,-1*K.1^22,-1*K.1^31,-1*K.1^47,-1*K.1^19,K.1^47,K.1^35,-1*K.1^7,K.1^11,K.1^31,-1*K.1^23,K.1,K.1^29,-1*K.1^41,-1*K.1^5,-1*K.1^37,K.1^29,K.1^37,K.1^23,-1*K.1^23,-1*K.1^25,-1*K.1^5,K.1^7,-1*K.1^29,K.1^5,-1*K.1^37,-1*K.1^29,K.1^25,K.1^25,-1*K.1^13,-1*K.1^19,-1*K.1^25,K.1^35,K.1^31,-1*K.1^31,-1*K.1^35,K.1^19,K.1^43,K.1^17,K.1^19,K.1^5,-1*K.1^17,-1*K.1^43,K.1^47,-1*K.1^11,K.1,K.1^41,-1*K.1^13,-1*K.1,-1*K.1,K.1^23,-1*K.1^7,K.1^11,-1*K.1^41,K.1^17,K.1^13,-1*K.1^11,-1*K.1^17,K.1^43,K.1^37,-1*K.1^35,K.1^7,K.1^41,-1*K.1^43,K.1^13,-1*K.1^47,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,-1*K.1^40,K.1^8,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,-1*K.1^18,K.1^30,K.1^44,-1*K.1^44,K.1^20,K.1^4,-1*K.1^20,K.1^20,K.1^44,K.1^28,-1*K.1^28,-1*K.1^44,-1*K.1^28,K.1^4,-1*K.1^4,K.1^28,-1*K.1^20,-1*K.1^4,-1*K.1^9,-1*K.1^33,K.1^39,K.1^21,K.1^3,K.1^39,-1*K.1^33,K.1^21,K.1^3,K.1^27,K.1^27,K.1^9,K.1^9,-1*K.1^15,K.1^45,-1*K.1^15,K.1^45,-1*K.1^45,-1*K.1^3,K.1^33,K.1^15,-1*K.1^39,-1*K.1^9,-1*K.1^27,-1*K.1^21,-1*K.1^3,-1*K.1^45,K.1^33,K.1^15,-1*K.1^27,-1*K.1^21,-1*K.1^39,-1*K.1^34,-1*K.1^2,K.1^26,-1*K.1^46,K.1^14,K.1^22,-1*K.1^22,-1*K.1^14,K.1^46,K.1^38,-1*K.1^14,-1*K.1^22,K.1^14,K.1^26,K.1^2,-1*K.1^10,-1*K.1^38,-1*K.1^10,K.1^10,-1*K.1^34,-1*K.1^26,K.1^34,-1*K.1^26,K.1^38,K.1^10,K.1^22,-1*K.1^38,-1*K.1^46,K.1^46,-1*K.1^2,K.1^34,K.1^2,K.1^5,-1*K.1^37,-1*K.1^17,K.1^37,K.1,K.1^29,K.1^25,-1*K.1^5,K.1^13,K.1^11,K.1^31,K.1^19,K.1^7,-1*K.1^23,K.1^31,K.1^23,-1*K.1^13,K.1^13,K.1^35,K.1^7,-1*K.1^29,-1*K.1^31,-1*K.1^7,-1*K.1^23,-1*K.1^31,-1*K.1^35,-1*K.1^35,-1*K.1^47,-1*K.1^17,K.1^35,K.1,-1*K.1^5,K.1^5,-1*K.1,K.1^17,-1*K.1^41,-1*K.1^43,K.1^17,-1*K.1^7,K.1^43,K.1^41,K.1^37,-1*K.1^25,K.1^11,-1*K.1^19,-1*K.1^47,-1*K.1^11,-1*K.1^11,-1*K.1^13,K.1^29,K.1^25,K.1^19,-1*K.1^43,K.1^47,-1*K.1^25,K.1^43,-1*K.1^41,K.1^23,-1*K.1,-1*K.1^29,-1*K.1^19,K.1^41,K.1^47,-1*K.1^37,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,-1*K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^8,K.1^40,K.1^8,-1*K.1^40,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,K.1^30,-1*K.1^18,-1*K.1^4,K.1^4,-1*K.1^28,-1*K.1^44,K.1^28,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^20,-1*K.1^44,K.1^44,-1*K.1^20,K.1^28,K.1^44,K.1^39,K.1^15,-1*K.1^9,-1*K.1^27,-1*K.1^45,-1*K.1^9,K.1^15,-1*K.1^27,-1*K.1^45,-1*K.1^21,-1*K.1^21,-1*K.1^39,-1*K.1^39,K.1^33,-1*K.1^3,K.1^33,-1*K.1^3,K.1^3,K.1^45,-1*K.1^15,-1*K.1^33,K.1^9,K.1^39,K.1^21,K.1^27,K.1^45,K.1^3,-1*K.1^15,-1*K.1^33,K.1^21,K.1^27,K.1^9,K.1^14,K.1^46,-1*K.1^22,K.1^2,-1*K.1^34,-1*K.1^26,K.1^26,K.1^34,-1*K.1^2,-1*K.1^10,K.1^34,K.1^26,-1*K.1^34,-1*K.1^22,-1*K.1^46,K.1^38,K.1^10,K.1^38,-1*K.1^38,K.1^14,K.1^22,-1*K.1^14,K.1^22,-1*K.1^10,-1*K.1^38,-1*K.1^26,K.1^10,K.1^2,-1*K.1^2,K.1^46,-1*K.1^14,-1*K.1^46,-1*K.1^43,K.1^11,K.1^31,-1*K.1^11,-1*K.1^47,-1*K.1^19,-1*K.1^23,K.1^43,-1*K.1^35,-1*K.1^37,-1*K.1^17,-1*K.1^29,-1*K.1^41,K.1^25,-1*K.1^17,-1*K.1^25,K.1^35,-1*K.1^35,-1*K.1^13,-1*K.1^41,K.1^19,K.1^17,K.1^41,K.1^25,K.1^17,K.1^13,K.1^13,K.1,K.1^31,-1*K.1^13,-1*K.1^47,K.1^43,-1*K.1^43,K.1^47,-1*K.1^31,K.1^7,K.1^5,-1*K.1^31,K.1^41,-1*K.1^5,-1*K.1^7,-1*K.1^11,K.1^23,-1*K.1^37,K.1^29,K.1,K.1^37,K.1^37,K.1^35,-1*K.1^19,-1*K.1^23,-1*K.1^29,K.1^5,-1*K.1,K.1^23,-1*K.1^5,K.1^7,-1*K.1^25,K.1^47,K.1^19,K.1^29,-1*K.1^7,-1*K.1,K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,-1*K.1^40,K.1^8,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^42,-1*K.1^6,-1*K.1^30,K.1^18,-1*K.1^42,K.1^6,-1*K.1^18,K.1^30,K.1^44,-1*K.1^44,K.1^20,K.1^4,-1*K.1^20,K.1^20,K.1^44,K.1^28,-1*K.1^28,-1*K.1^44,-1*K.1^28,K.1^4,-1*K.1^4,K.1^28,-1*K.1^20,-1*K.1^4,K.1^9,K.1^33,-1*K.1^39,-1*K.1^21,-1*K.1^3,-1*K.1^39,K.1^33,-1*K.1^21,-1*K.1^3,-1*K.1^27,-1*K.1^27,-1*K.1^9,-1*K.1^9,K.1^15,-1*K.1^45,K.1^15,-1*K.1^45,K.1^45,K.1^3,-1*K.1^33,-1*K.1^15,K.1^39,K.1^9,K.1^27,K.1^21,K.1^3,K.1^45,-1*K.1^33,-1*K.1^15,K.1^27,K.1^21,K.1^39,-1*K.1^34,-1*K.1^2,K.1^26,-1*K.1^46,K.1^14,K.1^22,-1*K.1^22,-1*K.1^14,K.1^46,K.1^38,-1*K.1^14,-1*K.1^22,K.1^14,K.1^26,K.1^2,-1*K.1^10,-1*K.1^38,-1*K.1^10,K.1^10,-1*K.1^34,-1*K.1^26,K.1^34,-1*K.1^26,K.1^38,K.1^10,K.1^22,-1*K.1^38,-1*K.1^46,K.1^46,-1*K.1^2,K.1^34,K.1^2,-1*K.1^5,K.1^37,K.1^17,-1*K.1^37,-1*K.1,-1*K.1^29,-1*K.1^25,K.1^5,-1*K.1^13,-1*K.1^11,-1*K.1^31,-1*K.1^19,-1*K.1^7,K.1^23,-1*K.1^31,-1*K.1^23,K.1^13,-1*K.1^13,-1*K.1^35,-1*K.1^7,K.1^29,K.1^31,K.1^7,K.1^23,K.1^31,K.1^35,K.1^35,K.1^47,K.1^17,-1*K.1^35,-1*K.1,K.1^5,-1*K.1^5,K.1,-1*K.1^17,K.1^41,K.1^43,-1*K.1^17,K.1^7,-1*K.1^43,-1*K.1^41,-1*K.1^37,K.1^25,-1*K.1^11,K.1^19,K.1^47,K.1^11,K.1^11,K.1^13,-1*K.1^29,-1*K.1^25,-1*K.1^19,K.1^43,-1*K.1^47,K.1^25,-1*K.1^43,K.1^41,-1*K.1^23,K.1,K.1^29,K.1^19,-1*K.1^41,-1*K.1^47,K.1^37,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,-1*K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^8,K.1^40,K.1^8,-1*K.1^40,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^6,K.1^42,K.1^18,-1*K.1^30,K.1^6,-1*K.1^42,K.1^30,-1*K.1^18,-1*K.1^4,K.1^4,-1*K.1^28,-1*K.1^44,K.1^28,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^20,-1*K.1^44,K.1^44,-1*K.1^20,K.1^28,K.1^44,-1*K.1^39,-1*K.1^15,K.1^9,K.1^27,K.1^45,K.1^9,-1*K.1^15,K.1^27,K.1^45,K.1^21,K.1^21,K.1^39,K.1^39,-1*K.1^33,K.1^3,-1*K.1^33,K.1^3,-1*K.1^3,-1*K.1^45,K.1^15,K.1^33,-1*K.1^9,-1*K.1^39,-1*K.1^21,-1*K.1^27,-1*K.1^45,-1*K.1^3,K.1^15,K.1^33,-1*K.1^21,-1*K.1^27,-1*K.1^9,K.1^14,K.1^46,-1*K.1^22,K.1^2,-1*K.1^34,-1*K.1^26,K.1^26,K.1^34,-1*K.1^2,-1*K.1^10,K.1^34,K.1^26,-1*K.1^34,-1*K.1^22,-1*K.1^46,K.1^38,K.1^10,K.1^38,-1*K.1^38,K.1^14,K.1^22,-1*K.1^14,K.1^22,-1*K.1^10,-1*K.1^38,-1*K.1^26,K.1^10,K.1^2,-1*K.1^2,K.1^46,-1*K.1^14,-1*K.1^46,K.1^43,-1*K.1^11,-1*K.1^31,K.1^11,K.1^47,K.1^19,K.1^23,-1*K.1^43,K.1^35,K.1^37,K.1^17,K.1^29,K.1^41,-1*K.1^25,K.1^17,K.1^25,-1*K.1^35,K.1^35,K.1^13,K.1^41,-1*K.1^19,-1*K.1^17,-1*K.1^41,-1*K.1^25,-1*K.1^17,-1*K.1^13,-1*K.1^13,-1*K.1,-1*K.1^31,K.1^13,K.1^47,-1*K.1^43,K.1^43,-1*K.1^47,K.1^31,-1*K.1^7,-1*K.1^5,K.1^31,-1*K.1^41,K.1^5,K.1^7,K.1^11,-1*K.1^23,K.1^37,-1*K.1^29,-1*K.1,-1*K.1^37,-1*K.1^37,-1*K.1^35,K.1^19,K.1^23,K.1^29,-1*K.1^5,K.1,-1*K.1^23,K.1^5,-1*K.1^7,K.1^25,-1*K.1^47,-1*K.1^19,-1*K.1^29,K.1^7,K.1,-1*K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,-1*K.1^40,K.1^8,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,K.1^18,-1*K.1^30,K.1^44,-1*K.1^44,K.1^20,K.1^4,-1*K.1^20,K.1^20,K.1^44,K.1^28,-1*K.1^28,-1*K.1^44,-1*K.1^28,K.1^4,-1*K.1^4,K.1^28,-1*K.1^20,-1*K.1^4,K.1^33,-1*K.1^9,-1*K.1^15,-1*K.1^45,K.1^27,-1*K.1^15,-1*K.1^9,-1*K.1^45,K.1^27,-1*K.1^3,-1*K.1^3,-1*K.1^33,-1*K.1^33,-1*K.1^39,K.1^21,-1*K.1^39,K.1^21,-1*K.1^21,-1*K.1^27,K.1^9,K.1^39,K.1^15,K.1^33,K.1^3,K.1^45,-1*K.1^27,-1*K.1^21,K.1^9,K.1^39,K.1^3,K.1^45,K.1^15,K.1^34,K.1^2,-1*K.1^26,K.1^46,-1*K.1^14,-1*K.1^22,K.1^22,K.1^14,-1*K.1^46,-1*K.1^38,K.1^14,K.1^22,-1*K.1^14,-1*K.1^26,-1*K.1^2,K.1^10,K.1^38,K.1^10,-1*K.1^10,K.1^34,K.1^26,-1*K.1^34,K.1^26,-1*K.1^38,-1*K.1^10,-1*K.1^22,K.1^38,K.1^46,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^2,-1*K.1^29,-1*K.1^13,K.1^41,K.1^13,-1*K.1^25,K.1^5,K.1,K.1^29,-1*K.1^37,K.1^35,-1*K.1^7,K.1^43,K.1^31,-1*K.1^47,-1*K.1^7,K.1^47,K.1^37,-1*K.1^37,-1*K.1^11,K.1^31,-1*K.1^5,K.1^7,-1*K.1^31,-1*K.1^47,K.1^7,K.1^11,K.1^11,K.1^23,K.1^41,-1*K.1^11,-1*K.1^25,K.1^29,-1*K.1^29,K.1^25,-1*K.1^41,-1*K.1^17,K.1^19,-1*K.1^41,-1*K.1^31,-1*K.1^19,K.1^17,K.1^13,-1*K.1,K.1^35,-1*K.1^43,K.1^23,-1*K.1^35,-1*K.1^35,K.1^37,K.1^5,K.1,K.1^43,K.1^19,-1*K.1^23,-1*K.1,-1*K.1^19,-1*K.1^17,K.1^47,K.1^25,-1*K.1^5,-1*K.1^43,K.1^17,-1*K.1^23,-1*K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,-1*K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^8,K.1^40,K.1^8,-1*K.1^40,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,-1*K.1^30,K.1^18,-1*K.1^4,K.1^4,-1*K.1^28,-1*K.1^44,K.1^28,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^20,-1*K.1^44,K.1^44,-1*K.1^20,K.1^28,K.1^44,-1*K.1^15,K.1^39,K.1^33,K.1^3,-1*K.1^21,K.1^33,K.1^39,K.1^3,-1*K.1^21,K.1^45,K.1^45,K.1^15,K.1^15,K.1^9,-1*K.1^27,K.1^9,-1*K.1^27,K.1^27,K.1^21,-1*K.1^39,-1*K.1^9,-1*K.1^33,-1*K.1^15,-1*K.1^45,-1*K.1^3,K.1^21,K.1^27,-1*K.1^39,-1*K.1^9,-1*K.1^45,-1*K.1^3,-1*K.1^33,-1*K.1^14,-1*K.1^46,K.1^22,-1*K.1^2,K.1^34,K.1^26,-1*K.1^26,-1*K.1^34,K.1^2,K.1^10,-1*K.1^34,-1*K.1^26,K.1^34,K.1^22,K.1^46,-1*K.1^38,-1*K.1^10,-1*K.1^38,K.1^38,-1*K.1^14,-1*K.1^22,K.1^14,-1*K.1^22,K.1^10,K.1^38,K.1^26,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^46,K.1^14,K.1^46,K.1^19,K.1^35,-1*K.1^7,-1*K.1^35,K.1^23,-1*K.1^43,-1*K.1^47,-1*K.1^19,K.1^11,-1*K.1^13,K.1^41,-1*K.1^5,-1*K.1^17,K.1,K.1^41,-1*K.1,-1*K.1^11,K.1^11,K.1^37,-1*K.1^17,K.1^43,-1*K.1^41,K.1^17,K.1,-1*K.1^41,-1*K.1^37,-1*K.1^37,-1*K.1^25,-1*K.1^7,K.1^37,K.1^23,-1*K.1^19,K.1^19,-1*K.1^23,K.1^7,K.1^31,-1*K.1^29,K.1^7,K.1^17,K.1^29,-1*K.1^31,-1*K.1^35,K.1^47,-1*K.1^13,K.1^5,-1*K.1^25,K.1^13,K.1^13,-1*K.1^11,-1*K.1^43,-1*K.1^47,-1*K.1^5,-1*K.1^29,K.1^25,K.1^47,K.1^29,K.1^31,-1*K.1,-1*K.1^23,K.1^43,K.1^5,-1*K.1^31,K.1^25,K.1^35,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,-1*K.1^16,K.1^32,-1,-1,K.1^32,-1*K.1^16,K.1^24,-1*K.1^24,-1*K.1^24,K.1^24,K.1^16,-1*K.1^32,-1*K.1^32,K.1^16,K.1^12,-1*K.1^36,K.1^36,-1*K.1^12,K.1^36,-1*K.1^12,-1*K.1^36,K.1^12,K.1^40,K.1^8,-1*K.1^8,-1*K.1^40,K.1^40,-1*K.1^8,-1*K.1^40,K.1^8,-1*K.1^30,K.1^18,-1*K.1^6,K.1^42,K.1^30,-1*K.1^18,K.1^6,-1*K.1^42,-1*K.1^42,K.1^6,K.1^30,-1*K.1^18,K.1^42,-1*K.1^6,K.1^18,-1*K.1^30,K.1^44,-1*K.1^44,K.1^20,K.1^4,-1*K.1^20,K.1^20,K.1^44,K.1^28,-1*K.1^28,-1*K.1^44,-1*K.1^28,K.1^4,-1*K.1^4,K.1^28,-1*K.1^20,-1*K.1^4,-1*K.1^33,K.1^9,K.1^15,K.1^45,-1*K.1^27,K.1^15,K.1^9,K.1^45,-1*K.1^27,K.1^3,K.1^3,K.1^33,K.1^33,K.1^39,-1*K.1^21,K.1^39,-1*K.1^21,K.1^21,K.1^27,-1*K.1^9,-1*K.1^39,-1*K.1^15,-1*K.1^33,-1*K.1^3,-1*K.1^45,K.1^27,K.1^21,-1*K.1^9,-1*K.1^39,-1*K.1^3,-1*K.1^45,-1*K.1^15,K.1^34,K.1^2,-1*K.1^26,K.1^46,-1*K.1^14,-1*K.1^22,K.1^22,K.1^14,-1*K.1^46,-1*K.1^38,K.1^14,K.1^22,-1*K.1^14,-1*K.1^26,-1*K.1^2,K.1^10,K.1^38,K.1^10,-1*K.1^10,K.1^34,K.1^26,-1*K.1^34,K.1^26,-1*K.1^38,-1*K.1^10,-1*K.1^22,K.1^38,K.1^46,-1*K.1^46,K.1^2,-1*K.1^34,-1*K.1^2,K.1^29,K.1^13,-1*K.1^41,-1*K.1^13,K.1^25,-1*K.1^5,-1*K.1,-1*K.1^29,K.1^37,-1*K.1^35,K.1^7,-1*K.1^43,-1*K.1^31,K.1^47,K.1^7,-1*K.1^47,-1*K.1^37,K.1^37,K.1^11,-1*K.1^31,K.1^5,-1*K.1^7,K.1^31,K.1^47,-1*K.1^7,-1*K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^41,K.1^11,K.1^25,-1*K.1^29,K.1^29,-1*K.1^25,K.1^41,K.1^17,-1*K.1^19,K.1^41,K.1^31,K.1^19,-1*K.1^17,-1*K.1^13,K.1,-1*K.1^35,K.1^43,-1*K.1^23,K.1^35,K.1^35,-1*K.1^37,-1*K.1^5,-1*K.1,-1*K.1^43,-1*K.1^19,K.1^23,K.1,K.1^19,K.1^17,-1*K.1^47,-1*K.1^25,K.1^5,K.1^43,-1*K.1^17,K.1^23,K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(96: Sparse := true); S := [ K |1,1,K.1^32,-1*K.1^16,-1,-1,-1*K.1^16,K.1^32,-1*K.1^24,K.1^24,K.1^24,-1*K.1^24,-1*K.1^32,K.1^16,K.1^16,-1*K.1^32,-1*K.1^36,K.1^12,-1*K.1^12,K.1^36,-1*K.1^12,K.1^36,K.1^12,-1*K.1^36,-1*K.1^8,-1*K.1^40,K.1^40,K.1^8,-1*K.1^8,K.1^40,K.1^8,-1*K.1^40,K.1^18,-1*K.1^30,K.1^42,-1*K.1^6,-1*K.1^18,K.1^30,-1*K.1^42,K.1^6,K.1^6,-1*K.1^42,-1*K.1^18,K.1^30,-1*K.1^6,K.1^42,-1*K.1^30,K.1^18,-1*K.1^4,K.1^4,-1*K.1^28,-1*K.1^44,K.1^28,-1*K.1^28,-1*K.1^4,-1*K.1^20,K.1^20,K.1^4,K.1^20,-1*K.1^44,K.1^44,-1*K.1^20,K.1^28,K.1^44,K.1^15,-1*K.1^39,-1*K.1^33,-1*K.1^3,K.1^21,-1*K.1^33,-1*K.1^39,-1*K.1^3,K.1^21,-1*K.1^45,-1*K.1^45,-1*K.1^15,-1*K.1^15,-1*K.1^9,K.1^27,-1*K.1^9,K.1^27,-1*K.1^27,-1*K.1^21,K.1^39,K.1^9,K.1^33,K.1^15,K.1^45,K.1^3,-1*K.1^21,-1*K.1^27,K.1^39,K.1^9,K.1^45,K.1^3,K.1^33,-1*K.1^14,-1*K.1^46,K.1^22,-1*K.1^2,K.1^34,K.1^26,-1*K.1^26,-1*K.1^34,K.1^2,K.1^10,-1*K.1^34,-1*K.1^26,K.1^34,K.1^22,K.1^46,-1*K.1^38,-1*K.1^10,-1*K.1^38,K.1^38,-1*K.1^14,-1*K.1^22,K.1^14,-1*K.1^22,K.1^10,K.1^38,K.1^26,-1*K.1^10,-1*K.1^2,K.1^2,-1*K.1^46,K.1^14,K.1^46,-1*K.1^19,-1*K.1^35,K.1^7,K.1^35,-1*K.1^23,K.1^43,K.1^47,K.1^19,-1*K.1^11,K.1^13,-1*K.1^41,K.1^5,K.1^17,-1*K.1,-1*K.1^41,K.1,K.1^11,-1*K.1^11,-1*K.1^37,K.1^17,-1*K.1^43,K.1^41,-1*K.1^17,-1*K.1,K.1^41,K.1^37,K.1^37,K.1^25,K.1^7,-1*K.1^37,-1*K.1^23,K.1^19,-1*K.1^19,K.1^23,-1*K.1^7,-1*K.1^31,K.1^29,-1*K.1^7,-1*K.1^17,-1*K.1^29,K.1^31,K.1^35,-1*K.1^47,K.1^13,-1*K.1^5,K.1^25,-1*K.1^13,-1*K.1^13,K.1^11,K.1^43,K.1^47,K.1^5,K.1^29,-1*K.1^25,-1*K.1^47,-1*K.1^29,-1*K.1^31,K.1,K.1^23,-1*K.1^43,-1*K.1^5,K.1^31,-1*K.1^25,-1*K.1^35,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^36,-1*K.1^60,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,K.1^60,K.1^36,K.1^56,-1*K.1^88,K.1^40,-1*K.1^8,-1*K.1^56,-1*K.1^40,K.1^8,K.1^88,-1*K.1^42,-1*K.1^54,-1*K.1^66,K.1^30,-1*K.1^90,K.1^6,K.1^18,-1*K.1^78,K.1^78,-1*K.1^18,K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,K.1^54,K.1^42,K.1^4,K.1^52,K.1^28,-1*K.1^44,-1*K.1^76,-1*K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^68,-1*K.1^52,K.1^68,K.1^44,-1*K.1^92,K.1^20,K.1^76,K.1^92,K.1^51,-1*K.1^27,K.1^45,K.1^39,-1*K.1^33,-1*K.1^45,K.1^27,-1*K.1^39,K.1^33,-1*K.1^9,K.1^9,K.1^3,-1*K.1^3,K.1^21,-1*K.1^15,-1*K.1^21,K.1^15,-1*K.1^63,K.1^81,K.1^75,-1*K.1^69,K.1^93,-1*K.1^51,-1*K.1^57,K.1^87,-1*K.1^81,K.1^63,-1*K.1^75,K.1^69,K.1^57,-1*K.1^87,-1*K.1^93,K.1^38,K.1^70,-1*K.1^94,K.1^74,-1*K.1^58,K.1^50,K.1^2,-1*K.1^10,-1*K.1^26,K.1^34,K.1^10,-1*K.1^2,K.1^58,K.1^94,-1*K.1^22,-1*K.1^62,-1*K.1^82,K.1^62,-1*K.1^14,-1*K.1^38,K.1^46,K.1^86,-1*K.1^46,-1*K.1^34,K.1^14,-1*K.1^50,K.1^82,-1*K.1^74,K.1^26,-1*K.1^70,-1*K.1^86,K.1^22,K.1^55,-1*K.1^71,-1*K.1^43,K.1^23,-1*K.1^11,-1*K.1^31,K.1^83,K.1^7,-1*K.1^47,-1*K.1^25,-1*K.1^53,-1*K.1^17,-1*K.1^77,K.1^13,K.1^53,K.1^61,-1*K.1^95,K.1^47,K.1,K.1^77,K.1^79,-1*K.1^5,K.1^29,-1*K.1^13,K.1^5,-1*K.1^49,K.1^49,K.1^85,K.1^43,-1*K.1,K.1^11,-1*K.1^7,-1*K.1^55,K.1^59,K.1^91,K.1^19,K.1^41,-1*K.1^91,-1*K.1^29,K.1^89,-1*K.1^67,-1*K.1^23,K.1^35,K.1^25,-1*K.1^65,-1*K.1^85,K.1^73,-1*K.1^73,K.1^95,K.1^31,-1*K.1^83,K.1^17,-1*K.1^41,K.1^37,-1*K.1^35,-1*K.1^89,-1*K.1^19,-1*K.1^61,-1*K.1^59,-1*K.1^79,K.1^65,K.1^67,-1*K.1^37,K.1^71,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^60,K.1^36,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,-1*K.1^36,-1*K.1^60,-1*K.1^40,K.1^8,-1*K.1^56,K.1^88,K.1^40,K.1^56,-1*K.1^88,-1*K.1^8,K.1^54,K.1^42,K.1^30,-1*K.1^66,K.1^6,-1*K.1^90,-1*K.1^78,K.1^18,-1*K.1^18,K.1^78,-1*K.1^6,K.1^90,K.1^66,-1*K.1^30,-1*K.1^42,-1*K.1^54,-1*K.1^92,-1*K.1^44,-1*K.1^68,K.1^52,K.1^20,K.1^68,K.1^92,K.1^76,K.1^28,K.1^44,-1*K.1^28,-1*K.1^52,K.1^4,-1*K.1^76,-1*K.1^20,-1*K.1^4,-1*K.1^45,K.1^69,-1*K.1^51,-1*K.1^57,K.1^63,K.1^51,-1*K.1^69,K.1^57,-1*K.1^63,K.1^87,-1*K.1^87,-1*K.1^93,K.1^93,-1*K.1^75,K.1^81,K.1^75,-1*K.1^81,K.1^33,-1*K.1^15,-1*K.1^21,K.1^27,-1*K.1^3,K.1^45,K.1^39,-1*K.1^9,K.1^15,-1*K.1^33,K.1^21,-1*K.1^27,-1*K.1^39,K.1^9,K.1^3,-1*K.1^58,-1*K.1^26,K.1^2,-1*K.1^22,K.1^38,-1*K.1^46,-1*K.1^94,K.1^86,K.1^70,-1*K.1^62,-1*K.1^86,K.1^94,-1*K.1^38,-1*K.1^2,K.1^74,K.1^34,K.1^14,-1*K.1^34,K.1^82,K.1^58,-1*K.1^50,-1*K.1^10,K.1^50,K.1^62,-1*K.1^82,K.1^46,-1*K.1^14,K.1^22,-1*K.1^70,K.1^26,K.1^10,-1*K.1^74,-1*K.1^41,K.1^25,K.1^53,-1*K.1^73,K.1^85,K.1^65,-1*K.1^13,-1*K.1^89,K.1^49,K.1^71,K.1^43,K.1^79,K.1^19,-1*K.1^83,-1*K.1^43,-1*K.1^35,K.1,-1*K.1^49,-1*K.1^95,-1*K.1^19,-1*K.1^17,K.1^91,-1*K.1^67,K.1^83,-1*K.1^91,K.1^47,-1*K.1^47,-1*K.1^11,-1*K.1^53,K.1^95,-1*K.1^85,K.1^89,K.1^41,-1*K.1^37,-1*K.1^5,-1*K.1^77,-1*K.1^55,K.1^5,K.1^67,-1*K.1^7,K.1^29,K.1^73,-1*K.1^61,-1*K.1^71,K.1^31,K.1^11,-1*K.1^23,K.1^23,-1*K.1,-1*K.1^65,K.1^13,-1*K.1^79,K.1^55,-1*K.1^59,K.1^61,K.1^7,K.1^77,K.1^35,K.1^37,K.1^17,-1*K.1^31,-1*K.1^29,K.1^59,-1*K.1^25,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^36,-1*K.1^60,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,K.1^60,K.1^36,K.1^56,-1*K.1^88,K.1^40,-1*K.1^8,-1*K.1^56,-1*K.1^40,K.1^8,K.1^88,-1*K.1^42,-1*K.1^54,-1*K.1^66,K.1^30,-1*K.1^90,K.1^6,K.1^18,-1*K.1^78,K.1^78,-1*K.1^18,K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,K.1^54,K.1^42,K.1^4,K.1^52,K.1^28,-1*K.1^44,-1*K.1^76,-1*K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^68,-1*K.1^52,K.1^68,K.1^44,-1*K.1^92,K.1^20,K.1^76,K.1^92,-1*K.1^51,K.1^27,-1*K.1^45,-1*K.1^39,K.1^33,K.1^45,-1*K.1^27,K.1^39,-1*K.1^33,K.1^9,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^21,K.1^15,K.1^21,-1*K.1^15,K.1^63,-1*K.1^81,-1*K.1^75,K.1^69,-1*K.1^93,K.1^51,K.1^57,-1*K.1^87,K.1^81,-1*K.1^63,K.1^75,-1*K.1^69,-1*K.1^57,K.1^87,K.1^93,K.1^38,K.1^70,-1*K.1^94,K.1^74,-1*K.1^58,K.1^50,K.1^2,-1*K.1^10,-1*K.1^26,K.1^34,K.1^10,-1*K.1^2,K.1^58,K.1^94,-1*K.1^22,-1*K.1^62,-1*K.1^82,K.1^62,-1*K.1^14,-1*K.1^38,K.1^46,K.1^86,-1*K.1^46,-1*K.1^34,K.1^14,-1*K.1^50,K.1^82,-1*K.1^74,K.1^26,-1*K.1^70,-1*K.1^86,K.1^22,-1*K.1^55,K.1^71,K.1^43,-1*K.1^23,K.1^11,K.1^31,-1*K.1^83,-1*K.1^7,K.1^47,K.1^25,K.1^53,K.1^17,K.1^77,-1*K.1^13,-1*K.1^53,-1*K.1^61,K.1^95,-1*K.1^47,-1*K.1,-1*K.1^77,-1*K.1^79,K.1^5,-1*K.1^29,K.1^13,-1*K.1^5,K.1^49,-1*K.1^49,-1*K.1^85,-1*K.1^43,K.1,-1*K.1^11,K.1^7,K.1^55,-1*K.1^59,-1*K.1^91,-1*K.1^19,-1*K.1^41,K.1^91,K.1^29,-1*K.1^89,K.1^67,K.1^23,-1*K.1^35,-1*K.1^25,K.1^65,K.1^85,-1*K.1^73,K.1^73,-1*K.1^95,-1*K.1^31,K.1^83,-1*K.1^17,K.1^41,-1*K.1^37,K.1^35,K.1^89,K.1^19,K.1^61,K.1^59,K.1^79,-1*K.1^65,-1*K.1^67,K.1^37,-1*K.1^71,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^60,K.1^36,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,-1*K.1^36,-1*K.1^60,-1*K.1^40,K.1^8,-1*K.1^56,K.1^88,K.1^40,K.1^56,-1*K.1^88,-1*K.1^8,K.1^54,K.1^42,K.1^30,-1*K.1^66,K.1^6,-1*K.1^90,-1*K.1^78,K.1^18,-1*K.1^18,K.1^78,-1*K.1^6,K.1^90,K.1^66,-1*K.1^30,-1*K.1^42,-1*K.1^54,-1*K.1^92,-1*K.1^44,-1*K.1^68,K.1^52,K.1^20,K.1^68,K.1^92,K.1^76,K.1^28,K.1^44,-1*K.1^28,-1*K.1^52,K.1^4,-1*K.1^76,-1*K.1^20,-1*K.1^4,K.1^45,-1*K.1^69,K.1^51,K.1^57,-1*K.1^63,-1*K.1^51,K.1^69,-1*K.1^57,K.1^63,-1*K.1^87,K.1^87,K.1^93,-1*K.1^93,K.1^75,-1*K.1^81,-1*K.1^75,K.1^81,-1*K.1^33,K.1^15,K.1^21,-1*K.1^27,K.1^3,-1*K.1^45,-1*K.1^39,K.1^9,-1*K.1^15,K.1^33,-1*K.1^21,K.1^27,K.1^39,-1*K.1^9,-1*K.1^3,-1*K.1^58,-1*K.1^26,K.1^2,-1*K.1^22,K.1^38,-1*K.1^46,-1*K.1^94,K.1^86,K.1^70,-1*K.1^62,-1*K.1^86,K.1^94,-1*K.1^38,-1*K.1^2,K.1^74,K.1^34,K.1^14,-1*K.1^34,K.1^82,K.1^58,-1*K.1^50,-1*K.1^10,K.1^50,K.1^62,-1*K.1^82,K.1^46,-1*K.1^14,K.1^22,-1*K.1^70,K.1^26,K.1^10,-1*K.1^74,K.1^41,-1*K.1^25,-1*K.1^53,K.1^73,-1*K.1^85,-1*K.1^65,K.1^13,K.1^89,-1*K.1^49,-1*K.1^71,-1*K.1^43,-1*K.1^79,-1*K.1^19,K.1^83,K.1^43,K.1^35,-1*K.1,K.1^49,K.1^95,K.1^19,K.1^17,-1*K.1^91,K.1^67,-1*K.1^83,K.1^91,-1*K.1^47,K.1^47,K.1^11,K.1^53,-1*K.1^95,K.1^85,-1*K.1^89,-1*K.1^41,K.1^37,K.1^5,K.1^77,K.1^55,-1*K.1^5,-1*K.1^67,K.1^7,-1*K.1^29,-1*K.1^73,K.1^61,K.1^71,-1*K.1^31,-1*K.1^11,K.1^23,-1*K.1^23,K.1,K.1^65,-1*K.1^13,K.1^79,-1*K.1^55,K.1^59,-1*K.1^61,-1*K.1^7,-1*K.1^77,-1*K.1^35,-1*K.1^37,-1*K.1^17,K.1^31,K.1^29,-1*K.1^59,K.1^25,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^36,-1*K.1^60,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,K.1^60,K.1^36,K.1^56,-1*K.1^88,K.1^40,-1*K.1^8,-1*K.1^56,-1*K.1^40,K.1^8,K.1^88,K.1^42,K.1^54,K.1^66,-1*K.1^30,K.1^90,-1*K.1^6,-1*K.1^18,K.1^78,-1*K.1^78,K.1^18,-1*K.1^90,K.1^6,K.1^30,-1*K.1^66,-1*K.1^54,-1*K.1^42,K.1^4,K.1^52,K.1^28,-1*K.1^44,-1*K.1^76,-1*K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^68,-1*K.1^52,K.1^68,K.1^44,-1*K.1^92,K.1^20,K.1^76,K.1^92,-1*K.1^3,-1*K.1^75,-1*K.1^93,K.1^87,K.1^81,K.1^93,K.1^75,-1*K.1^87,-1*K.1^81,K.1^57,-1*K.1^57,K.1^51,-1*K.1^51,-1*K.1^69,-1*K.1^63,K.1^69,K.1^63,K.1^15,K.1^33,-1*K.1^27,-1*K.1^21,K.1^45,K.1^3,-1*K.1^9,-1*K.1^39,-1*K.1^33,-1*K.1^15,K.1^27,K.1^21,K.1^9,K.1^39,-1*K.1^45,-1*K.1^38,-1*K.1^70,K.1^94,-1*K.1^74,K.1^58,-1*K.1^50,-1*K.1^2,K.1^10,K.1^26,-1*K.1^34,-1*K.1^10,K.1^2,-1*K.1^58,-1*K.1^94,K.1^22,K.1^62,K.1^82,-1*K.1^62,K.1^14,K.1^38,-1*K.1^46,-1*K.1^86,K.1^46,K.1^34,-1*K.1^14,K.1^50,-1*K.1^82,K.1^74,-1*K.1^26,K.1^70,K.1^86,-1*K.1^22,-1*K.1^7,K.1^23,-1*K.1^91,K.1^71,-1*K.1^59,-1*K.1^79,-1*K.1^35,K.1^55,-1*K.1^95,K.1^73,-1*K.1^5,K.1^65,-1*K.1^29,-1*K.1^61,K.1^5,K.1^13,K.1^47,K.1^95,-1*K.1^49,K.1^29,-1*K.1^31,K.1^53,-1*K.1^77,K.1^61,-1*K.1^53,-1*K.1,K.1,K.1^37,K.1^91,K.1^49,K.1^59,-1*K.1^55,K.1^7,-1*K.1^11,-1*K.1^43,K.1^67,-1*K.1^89,K.1^43,K.1^77,K.1^41,K.1^19,-1*K.1^71,K.1^83,-1*K.1^73,-1*K.1^17,-1*K.1^37,K.1^25,-1*K.1^25,-1*K.1^47,K.1^79,K.1^35,-1*K.1^65,K.1^89,-1*K.1^85,-1*K.1^83,-1*K.1^41,-1*K.1^67,-1*K.1^13,K.1^11,K.1^31,K.1^17,-1*K.1^19,K.1^85,-1*K.1^23,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^60,K.1^36,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,-1*K.1^36,-1*K.1^60,-1*K.1^40,K.1^8,-1*K.1^56,K.1^88,K.1^40,K.1^56,-1*K.1^88,-1*K.1^8,-1*K.1^54,-1*K.1^42,-1*K.1^30,K.1^66,-1*K.1^6,K.1^90,K.1^78,-1*K.1^18,K.1^18,-1*K.1^78,K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,K.1^42,K.1^54,-1*K.1^92,-1*K.1^44,-1*K.1^68,K.1^52,K.1^20,K.1^68,K.1^92,K.1^76,K.1^28,K.1^44,-1*K.1^28,-1*K.1^52,K.1^4,-1*K.1^76,-1*K.1^20,-1*K.1^4,K.1^93,K.1^21,K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^3,-1*K.1^21,K.1^9,K.1^15,-1*K.1^39,K.1^39,-1*K.1^45,K.1^45,K.1^27,K.1^33,-1*K.1^27,-1*K.1^33,-1*K.1^81,-1*K.1^63,K.1^69,K.1^75,-1*K.1^51,-1*K.1^93,K.1^87,K.1^57,K.1^63,K.1^81,-1*K.1^69,-1*K.1^75,-1*K.1^87,-1*K.1^57,K.1^51,K.1^58,K.1^26,-1*K.1^2,K.1^22,-1*K.1^38,K.1^46,K.1^94,-1*K.1^86,-1*K.1^70,K.1^62,K.1^86,-1*K.1^94,K.1^38,K.1^2,-1*K.1^74,-1*K.1^34,-1*K.1^14,K.1^34,-1*K.1^82,-1*K.1^58,K.1^50,K.1^10,-1*K.1^50,-1*K.1^62,K.1^82,-1*K.1^46,K.1^14,-1*K.1^22,K.1^70,-1*K.1^26,-1*K.1^10,K.1^74,K.1^89,-1*K.1^73,K.1^5,-1*K.1^25,K.1^37,K.1^17,K.1^61,-1*K.1^41,K.1,-1*K.1^23,K.1^91,-1*K.1^31,K.1^67,K.1^35,-1*K.1^91,-1*K.1^83,-1*K.1^49,-1*K.1,K.1^47,-1*K.1^67,K.1^65,-1*K.1^43,K.1^19,-1*K.1^35,K.1^43,K.1^95,-1*K.1^95,-1*K.1^59,-1*K.1^5,-1*K.1^47,-1*K.1^37,K.1^41,-1*K.1^89,K.1^85,K.1^53,-1*K.1^29,K.1^7,-1*K.1^53,-1*K.1^19,-1*K.1^55,-1*K.1^77,K.1^25,-1*K.1^13,K.1^23,K.1^79,K.1^59,-1*K.1^71,K.1^71,K.1^49,-1*K.1^17,-1*K.1^61,K.1^31,-1*K.1^7,K.1^11,K.1^13,K.1^55,K.1^29,K.1^83,-1*K.1^85,-1*K.1^65,-1*K.1^79,K.1^77,-1*K.1^11,K.1^73,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^36,-1*K.1^60,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,K.1^60,K.1^36,K.1^56,-1*K.1^88,K.1^40,-1*K.1^8,-1*K.1^56,-1*K.1^40,K.1^8,K.1^88,K.1^42,K.1^54,K.1^66,-1*K.1^30,K.1^90,-1*K.1^6,-1*K.1^18,K.1^78,-1*K.1^78,K.1^18,-1*K.1^90,K.1^6,K.1^30,-1*K.1^66,-1*K.1^54,-1*K.1^42,K.1^4,K.1^52,K.1^28,-1*K.1^44,-1*K.1^76,-1*K.1^28,-1*K.1^4,-1*K.1^20,-1*K.1^68,-1*K.1^52,K.1^68,K.1^44,-1*K.1^92,K.1^20,K.1^76,K.1^92,K.1^3,K.1^75,K.1^93,-1*K.1^87,-1*K.1^81,-1*K.1^93,-1*K.1^75,K.1^87,K.1^81,-1*K.1^57,K.1^57,-1*K.1^51,K.1^51,K.1^69,K.1^63,-1*K.1^69,-1*K.1^63,-1*K.1^15,-1*K.1^33,K.1^27,K.1^21,-1*K.1^45,-1*K.1^3,K.1^9,K.1^39,K.1^33,K.1^15,-1*K.1^27,-1*K.1^21,-1*K.1^9,-1*K.1^39,K.1^45,-1*K.1^38,-1*K.1^70,K.1^94,-1*K.1^74,K.1^58,-1*K.1^50,-1*K.1^2,K.1^10,K.1^26,-1*K.1^34,-1*K.1^10,K.1^2,-1*K.1^58,-1*K.1^94,K.1^22,K.1^62,K.1^82,-1*K.1^62,K.1^14,K.1^38,-1*K.1^46,-1*K.1^86,K.1^46,K.1^34,-1*K.1^14,K.1^50,-1*K.1^82,K.1^74,-1*K.1^26,K.1^70,K.1^86,-1*K.1^22,K.1^7,-1*K.1^23,K.1^91,-1*K.1^71,K.1^59,K.1^79,K.1^35,-1*K.1^55,K.1^95,-1*K.1^73,K.1^5,-1*K.1^65,K.1^29,K.1^61,-1*K.1^5,-1*K.1^13,-1*K.1^47,-1*K.1^95,K.1^49,-1*K.1^29,K.1^31,-1*K.1^53,K.1^77,-1*K.1^61,K.1^53,K.1,-1*K.1,-1*K.1^37,-1*K.1^91,-1*K.1^49,-1*K.1^59,K.1^55,-1*K.1^7,K.1^11,K.1^43,-1*K.1^67,K.1^89,-1*K.1^43,-1*K.1^77,-1*K.1^41,-1*K.1^19,K.1^71,-1*K.1^83,K.1^73,K.1^17,K.1^37,-1*K.1^25,K.1^25,K.1^47,-1*K.1^79,-1*K.1^35,K.1^65,-1*K.1^89,K.1^85,K.1^83,K.1^41,K.1^67,K.1^13,-1*K.1^11,-1*K.1^31,-1*K.1^17,K.1^19,-1*K.1^85,K.1^23,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^60,K.1^36,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,-1*K.1^36,-1*K.1^60,-1*K.1^40,K.1^8,-1*K.1^56,K.1^88,K.1^40,K.1^56,-1*K.1^88,-1*K.1^8,-1*K.1^54,-1*K.1^42,-1*K.1^30,K.1^66,-1*K.1^6,K.1^90,K.1^78,-1*K.1^18,K.1^18,-1*K.1^78,K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,K.1^42,K.1^54,-1*K.1^92,-1*K.1^44,-1*K.1^68,K.1^52,K.1^20,K.1^68,K.1^92,K.1^76,K.1^28,K.1^44,-1*K.1^28,-1*K.1^52,K.1^4,-1*K.1^76,-1*K.1^20,-1*K.1^4,-1*K.1^93,-1*K.1^21,-1*K.1^3,K.1^9,K.1^15,K.1^3,K.1^21,-1*K.1^9,-1*K.1^15,K.1^39,-1*K.1^39,K.1^45,-1*K.1^45,-1*K.1^27,-1*K.1^33,K.1^27,K.1^33,K.1^81,K.1^63,-1*K.1^69,-1*K.1^75,K.1^51,K.1^93,-1*K.1^87,-1*K.1^57,-1*K.1^63,-1*K.1^81,K.1^69,K.1^75,K.1^87,K.1^57,-1*K.1^51,K.1^58,K.1^26,-1*K.1^2,K.1^22,-1*K.1^38,K.1^46,K.1^94,-1*K.1^86,-1*K.1^70,K.1^62,K.1^86,-1*K.1^94,K.1^38,K.1^2,-1*K.1^74,-1*K.1^34,-1*K.1^14,K.1^34,-1*K.1^82,-1*K.1^58,K.1^50,K.1^10,-1*K.1^50,-1*K.1^62,K.1^82,-1*K.1^46,K.1^14,-1*K.1^22,K.1^70,-1*K.1^26,-1*K.1^10,K.1^74,-1*K.1^89,K.1^73,-1*K.1^5,K.1^25,-1*K.1^37,-1*K.1^17,-1*K.1^61,K.1^41,-1*K.1,K.1^23,-1*K.1^91,K.1^31,-1*K.1^67,-1*K.1^35,K.1^91,K.1^83,K.1^49,K.1,-1*K.1^47,K.1^67,-1*K.1^65,K.1^43,-1*K.1^19,K.1^35,-1*K.1^43,-1*K.1^95,K.1^95,K.1^59,K.1^5,K.1^47,K.1^37,-1*K.1^41,K.1^89,-1*K.1^85,-1*K.1^53,K.1^29,-1*K.1^7,K.1^53,K.1^19,K.1^55,K.1^77,-1*K.1^25,K.1^13,-1*K.1^23,-1*K.1^79,-1*K.1^59,K.1^71,-1*K.1^71,-1*K.1^49,K.1^17,K.1^61,-1*K.1^31,K.1^7,-1*K.1^11,-1*K.1^13,-1*K.1^55,-1*K.1^29,-1*K.1^83,K.1^85,K.1^65,K.1^79,-1*K.1^77,K.1^11,-1*K.1^73,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^36,K.1^60,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^88,K.1^40,-1*K.1^8,-1*K.1^56,-1*K.1^40,K.1^8,K.1^88,K.1^90,K.1^6,-1*K.1^18,K.1^78,-1*K.1^42,K.1^54,-1*K.1^66,K.1^30,-1*K.1^30,K.1^66,K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,-1*K.1^6,-1*K.1^90,-1*K.1^4,-1*K.1^52,-1*K.1^28,K.1^44,K.1^76,K.1^28,K.1^4,K.1^20,K.1^68,K.1^52,-1*K.1^68,-1*K.1^44,K.1^92,-1*K.1^20,-1*K.1^76,-1*K.1^92,K.1^75,-1*K.1^51,K.1^21,-1*K.1^63,K.1^9,-1*K.1^21,K.1^51,K.1^63,-1*K.1^9,-1*K.1^81,K.1^81,K.1^27,-1*K.1^27,-1*K.1^93,K.1^39,K.1^93,-1*K.1^39,K.1^87,-1*K.1^57,-1*K.1^3,-1*K.1^45,K.1^69,-1*K.1^75,K.1^33,K.1^15,K.1^57,-1*K.1^87,K.1^3,K.1^45,-1*K.1^33,-1*K.1^15,-1*K.1^69,K.1^86,-1*K.1^22,K.1^46,K.1^26,-1*K.1^10,K.1^2,-1*K.1^50,K.1^58,K.1^74,-1*K.1^82,-1*K.1^58,K.1^50,K.1^10,-1*K.1^46,-1*K.1^70,K.1^14,-1*K.1^34,-1*K.1^14,-1*K.1^62,-1*K.1^86,K.1^94,-1*K.1^38,-1*K.1^94,K.1^82,K.1^62,-1*K.1^2,K.1^34,-1*K.1^26,-1*K.1^74,K.1^22,K.1^38,K.1^70,-1*K.1^79,K.1^95,-1*K.1^67,-1*K.1^47,-1*K.1^35,K.1^55,-1*K.1^11,-1*K.1^31,K.1^71,K.1,-1*K.1^29,-1*K.1^89,-1*K.1^53,-1*K.1^85,K.1^29,K.1^37,-1*K.1^23,-1*K.1^71,K.1^73,K.1^53,K.1^7,K.1^77,K.1^5,K.1^85,-1*K.1^77,K.1^25,-1*K.1^25,K.1^61,K.1^67,-1*K.1^73,K.1^35,K.1^31,K.1^79,K.1^83,-1*K.1^19,K.1^43,-1*K.1^17,K.1^19,-1*K.1^5,-1*K.1^65,-1*K.1^91,K.1^47,K.1^59,-1*K.1,K.1^41,-1*K.1^61,-1*K.1^49,K.1^49,K.1^23,-1*K.1^55,K.1^11,K.1^89,K.1^17,K.1^13,-1*K.1^59,K.1^65,-1*K.1^43,-1*K.1^37,-1*K.1^83,-1*K.1^7,-1*K.1^41,K.1^91,-1*K.1^13,-1*K.1^95,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^60,-1*K.1^36,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,K.1^36,K.1^60,-1*K.1^40,K.1^8,-1*K.1^56,K.1^88,K.1^40,K.1^56,-1*K.1^88,-1*K.1^8,-1*K.1^6,-1*K.1^90,K.1^78,-1*K.1^18,K.1^54,-1*K.1^42,K.1^30,-1*K.1^66,K.1^66,-1*K.1^30,-1*K.1^54,K.1^42,K.1^18,-1*K.1^78,K.1^90,K.1^6,K.1^92,K.1^44,K.1^68,-1*K.1^52,-1*K.1^20,-1*K.1^68,-1*K.1^92,-1*K.1^76,-1*K.1^28,-1*K.1^44,K.1^28,K.1^52,-1*K.1^4,K.1^76,K.1^20,K.1^4,-1*K.1^21,K.1^45,-1*K.1^75,K.1^33,-1*K.1^87,K.1^75,-1*K.1^45,-1*K.1^33,K.1^87,K.1^15,-1*K.1^15,-1*K.1^69,K.1^69,K.1^3,-1*K.1^57,-1*K.1^3,K.1^57,-1*K.1^9,K.1^39,K.1^93,K.1^51,-1*K.1^27,K.1^21,-1*K.1^63,-1*K.1^81,-1*K.1^39,K.1^9,-1*K.1^93,-1*K.1^51,K.1^63,K.1^81,K.1^27,-1*K.1^10,K.1^74,-1*K.1^50,-1*K.1^70,K.1^86,-1*K.1^94,K.1^46,-1*K.1^38,-1*K.1^22,K.1^14,K.1^38,-1*K.1^46,-1*K.1^86,K.1^50,K.1^26,-1*K.1^82,K.1^62,K.1^82,K.1^34,K.1^10,-1*K.1^2,K.1^58,K.1^2,-1*K.1^14,-1*K.1^34,K.1^94,-1*K.1^62,K.1^70,K.1^22,-1*K.1^74,-1*K.1^58,-1*K.1^26,K.1^17,-1*K.1,K.1^29,K.1^49,K.1^61,-1*K.1^41,K.1^85,K.1^65,-1*K.1^25,-1*K.1^95,K.1^67,K.1^7,K.1^43,K.1^11,-1*K.1^67,-1*K.1^59,K.1^73,K.1^25,-1*K.1^23,-1*K.1^43,-1*K.1^89,-1*K.1^19,-1*K.1^91,-1*K.1^11,K.1^19,-1*K.1^71,K.1^71,-1*K.1^35,-1*K.1^29,K.1^23,-1*K.1^61,-1*K.1^65,-1*K.1^17,-1*K.1^13,K.1^77,-1*K.1^53,K.1^79,-1*K.1^77,K.1^91,K.1^31,K.1^5,-1*K.1^49,-1*K.1^37,K.1^95,-1*K.1^55,K.1^35,K.1^47,-1*K.1^47,-1*K.1^73,K.1^41,-1*K.1^85,-1*K.1^7,-1*K.1^79,-1*K.1^83,K.1^37,-1*K.1^31,K.1^53,K.1^59,K.1^13,K.1^89,K.1^55,-1*K.1^5,K.1^83,K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^36,K.1^60,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^88,K.1^40,-1*K.1^8,-1*K.1^56,-1*K.1^40,K.1^8,K.1^88,K.1^90,K.1^6,-1*K.1^18,K.1^78,-1*K.1^42,K.1^54,-1*K.1^66,K.1^30,-1*K.1^30,K.1^66,K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,-1*K.1^6,-1*K.1^90,-1*K.1^4,-1*K.1^52,-1*K.1^28,K.1^44,K.1^76,K.1^28,K.1^4,K.1^20,K.1^68,K.1^52,-1*K.1^68,-1*K.1^44,K.1^92,-1*K.1^20,-1*K.1^76,-1*K.1^92,-1*K.1^75,K.1^51,-1*K.1^21,K.1^63,-1*K.1^9,K.1^21,-1*K.1^51,-1*K.1^63,K.1^9,K.1^81,-1*K.1^81,-1*K.1^27,K.1^27,K.1^93,-1*K.1^39,-1*K.1^93,K.1^39,-1*K.1^87,K.1^57,K.1^3,K.1^45,-1*K.1^69,K.1^75,-1*K.1^33,-1*K.1^15,-1*K.1^57,K.1^87,-1*K.1^3,-1*K.1^45,K.1^33,K.1^15,K.1^69,K.1^86,-1*K.1^22,K.1^46,K.1^26,-1*K.1^10,K.1^2,-1*K.1^50,K.1^58,K.1^74,-1*K.1^82,-1*K.1^58,K.1^50,K.1^10,-1*K.1^46,-1*K.1^70,K.1^14,-1*K.1^34,-1*K.1^14,-1*K.1^62,-1*K.1^86,K.1^94,-1*K.1^38,-1*K.1^94,K.1^82,K.1^62,-1*K.1^2,K.1^34,-1*K.1^26,-1*K.1^74,K.1^22,K.1^38,K.1^70,K.1^79,-1*K.1^95,K.1^67,K.1^47,K.1^35,-1*K.1^55,K.1^11,K.1^31,-1*K.1^71,-1*K.1,K.1^29,K.1^89,K.1^53,K.1^85,-1*K.1^29,-1*K.1^37,K.1^23,K.1^71,-1*K.1^73,-1*K.1^53,-1*K.1^7,-1*K.1^77,-1*K.1^5,-1*K.1^85,K.1^77,-1*K.1^25,K.1^25,-1*K.1^61,-1*K.1^67,K.1^73,-1*K.1^35,-1*K.1^31,-1*K.1^79,-1*K.1^83,K.1^19,-1*K.1^43,K.1^17,-1*K.1^19,K.1^5,K.1^65,K.1^91,-1*K.1^47,-1*K.1^59,K.1,-1*K.1^41,K.1^61,K.1^49,-1*K.1^49,-1*K.1^23,K.1^55,-1*K.1^11,-1*K.1^89,-1*K.1^17,-1*K.1^13,K.1^59,-1*K.1^65,K.1^43,K.1^37,K.1^83,K.1^7,K.1^41,-1*K.1^91,K.1^13,K.1^95,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^60,-1*K.1^36,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,K.1^36,K.1^60,-1*K.1^40,K.1^8,-1*K.1^56,K.1^88,K.1^40,K.1^56,-1*K.1^88,-1*K.1^8,-1*K.1^6,-1*K.1^90,K.1^78,-1*K.1^18,K.1^54,-1*K.1^42,K.1^30,-1*K.1^66,K.1^66,-1*K.1^30,-1*K.1^54,K.1^42,K.1^18,-1*K.1^78,K.1^90,K.1^6,K.1^92,K.1^44,K.1^68,-1*K.1^52,-1*K.1^20,-1*K.1^68,-1*K.1^92,-1*K.1^76,-1*K.1^28,-1*K.1^44,K.1^28,K.1^52,-1*K.1^4,K.1^76,K.1^20,K.1^4,K.1^21,-1*K.1^45,K.1^75,-1*K.1^33,K.1^87,-1*K.1^75,K.1^45,K.1^33,-1*K.1^87,-1*K.1^15,K.1^15,K.1^69,-1*K.1^69,-1*K.1^3,K.1^57,K.1^3,-1*K.1^57,K.1^9,-1*K.1^39,-1*K.1^93,-1*K.1^51,K.1^27,-1*K.1^21,K.1^63,K.1^81,K.1^39,-1*K.1^9,K.1^93,K.1^51,-1*K.1^63,-1*K.1^81,-1*K.1^27,-1*K.1^10,K.1^74,-1*K.1^50,-1*K.1^70,K.1^86,-1*K.1^94,K.1^46,-1*K.1^38,-1*K.1^22,K.1^14,K.1^38,-1*K.1^46,-1*K.1^86,K.1^50,K.1^26,-1*K.1^82,K.1^62,K.1^82,K.1^34,K.1^10,-1*K.1^2,K.1^58,K.1^2,-1*K.1^14,-1*K.1^34,K.1^94,-1*K.1^62,K.1^70,K.1^22,-1*K.1^74,-1*K.1^58,-1*K.1^26,-1*K.1^17,K.1,-1*K.1^29,-1*K.1^49,-1*K.1^61,K.1^41,-1*K.1^85,-1*K.1^65,K.1^25,K.1^95,-1*K.1^67,-1*K.1^7,-1*K.1^43,-1*K.1^11,K.1^67,K.1^59,-1*K.1^73,-1*K.1^25,K.1^23,K.1^43,K.1^89,K.1^19,K.1^91,K.1^11,-1*K.1^19,K.1^71,-1*K.1^71,K.1^35,K.1^29,-1*K.1^23,K.1^61,K.1^65,K.1^17,K.1^13,-1*K.1^77,K.1^53,-1*K.1^79,K.1^77,-1*K.1^91,-1*K.1^31,-1*K.1^5,K.1^49,K.1^37,-1*K.1^95,K.1^55,-1*K.1^35,-1*K.1^47,K.1^47,K.1^73,-1*K.1^41,K.1^85,K.1^7,K.1^79,K.1^83,-1*K.1^37,K.1^31,-1*K.1^53,-1*K.1^59,-1*K.1^13,-1*K.1^89,-1*K.1^55,K.1^5,-1*K.1^83,-1*K.1,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^36,K.1^60,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^88,K.1^40,-1*K.1^8,-1*K.1^56,-1*K.1^40,K.1^8,K.1^88,-1*K.1^90,-1*K.1^6,K.1^18,-1*K.1^78,K.1^42,-1*K.1^54,K.1^66,-1*K.1^30,K.1^30,-1*K.1^66,-1*K.1^42,K.1^54,K.1^78,-1*K.1^18,K.1^6,K.1^90,-1*K.1^4,-1*K.1^52,-1*K.1^28,K.1^44,K.1^76,K.1^28,K.1^4,K.1^20,K.1^68,K.1^52,-1*K.1^68,-1*K.1^44,K.1^92,-1*K.1^20,-1*K.1^76,-1*K.1^92,-1*K.1^27,K.1^3,-1*K.1^69,K.1^15,-1*K.1^57,K.1^69,-1*K.1^3,-1*K.1^15,K.1^57,-1*K.1^33,K.1^33,K.1^75,-1*K.1^75,-1*K.1^45,K.1^87,K.1^45,-1*K.1^87,-1*K.1^39,-1*K.1^9,-1*K.1^51,K.1^93,K.1^21,K.1^27,-1*K.1^81,K.1^63,K.1^9,K.1^39,K.1^51,-1*K.1^93,K.1^81,-1*K.1^63,-1*K.1^21,-1*K.1^86,K.1^22,-1*K.1^46,-1*K.1^26,K.1^10,-1*K.1^2,K.1^50,-1*K.1^58,-1*K.1^74,K.1^82,K.1^58,-1*K.1^50,-1*K.1^10,K.1^46,K.1^70,-1*K.1^14,K.1^34,K.1^14,K.1^62,K.1^86,-1*K.1^94,K.1^38,K.1^94,-1*K.1^82,-1*K.1^62,K.1^2,-1*K.1^34,K.1^26,K.1^74,-1*K.1^22,-1*K.1^38,-1*K.1^70,K.1^31,-1*K.1^47,K.1^19,-1*K.1^95,-1*K.1^83,-1*K.1^7,-1*K.1^59,-1*K.1^79,-1*K.1^23,-1*K.1^49,K.1^77,-1*K.1^41,-1*K.1^5,-1*K.1^37,-1*K.1^77,-1*K.1^85,-1*K.1^71,K.1^23,K.1^25,K.1^5,K.1^55,K.1^29,-1*K.1^53,K.1^37,-1*K.1^29,-1*K.1^73,K.1^73,K.1^13,-1*K.1^19,-1*K.1^25,K.1^83,K.1^79,-1*K.1^31,-1*K.1^35,-1*K.1^67,K.1^91,K.1^65,K.1^67,K.1^53,-1*K.1^17,K.1^43,K.1^95,-1*K.1^11,K.1^49,-1*K.1^89,-1*K.1^13,-1*K.1,K.1,K.1^71,K.1^7,K.1^59,K.1^41,-1*K.1^65,-1*K.1^61,K.1^11,K.1^17,-1*K.1^91,K.1^85,K.1^35,-1*K.1^55,K.1^89,-1*K.1^43,K.1^61,K.1^47,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^60,-1*K.1^36,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,K.1^36,K.1^60,-1*K.1^40,K.1^8,-1*K.1^56,K.1^88,K.1^40,K.1^56,-1*K.1^88,-1*K.1^8,K.1^6,K.1^90,-1*K.1^78,K.1^18,-1*K.1^54,K.1^42,-1*K.1^30,K.1^66,-1*K.1^66,K.1^30,K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,-1*K.1^90,-1*K.1^6,K.1^92,K.1^44,K.1^68,-1*K.1^52,-1*K.1^20,-1*K.1^68,-1*K.1^92,-1*K.1^76,-1*K.1^28,-1*K.1^44,K.1^28,K.1^52,-1*K.1^4,K.1^76,K.1^20,K.1^4,K.1^69,-1*K.1^93,K.1^27,-1*K.1^81,K.1^39,-1*K.1^27,K.1^93,K.1^81,-1*K.1^39,K.1^63,-1*K.1^63,-1*K.1^21,K.1^21,K.1^51,-1*K.1^9,-1*K.1^51,K.1^9,K.1^57,K.1^87,K.1^45,-1*K.1^3,-1*K.1^75,-1*K.1^69,K.1^15,-1*K.1^33,-1*K.1^87,-1*K.1^57,-1*K.1^45,K.1^3,-1*K.1^15,K.1^33,K.1^75,K.1^10,-1*K.1^74,K.1^50,K.1^70,-1*K.1^86,K.1^94,-1*K.1^46,K.1^38,K.1^22,-1*K.1^14,-1*K.1^38,K.1^46,K.1^86,-1*K.1^50,-1*K.1^26,K.1^82,-1*K.1^62,-1*K.1^82,-1*K.1^34,-1*K.1^10,K.1^2,-1*K.1^58,-1*K.1^2,K.1^14,K.1^34,-1*K.1^94,K.1^62,-1*K.1^70,-1*K.1^22,K.1^74,K.1^58,K.1^26,-1*K.1^65,K.1^49,-1*K.1^77,K.1,K.1^13,K.1^89,K.1^37,K.1^17,K.1^73,K.1^47,-1*K.1^19,K.1^55,K.1^91,K.1^59,K.1^19,K.1^11,K.1^25,-1*K.1^73,-1*K.1^71,-1*K.1^91,-1*K.1^41,-1*K.1^67,K.1^43,-1*K.1^59,K.1^67,K.1^23,-1*K.1^23,-1*K.1^83,K.1^77,K.1^71,-1*K.1^13,-1*K.1^17,K.1^65,K.1^61,K.1^29,-1*K.1^5,-1*K.1^31,-1*K.1^29,-1*K.1^43,K.1^79,-1*K.1^53,-1*K.1,K.1^85,-1*K.1^47,K.1^7,K.1^83,K.1^95,-1*K.1^95,-1*K.1^25,-1*K.1^89,-1*K.1^37,-1*K.1^55,K.1^31,K.1^35,-1*K.1^85,-1*K.1^79,K.1^5,-1*K.1^11,-1*K.1^61,K.1^41,-1*K.1^7,K.1^53,-1*K.1^35,-1*K.1^49,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^36,K.1^60,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,-1*K.1^60,-1*K.1^36,K.1^56,-1*K.1^88,K.1^40,-1*K.1^8,-1*K.1^56,-1*K.1^40,K.1^8,K.1^88,-1*K.1^90,-1*K.1^6,K.1^18,-1*K.1^78,K.1^42,-1*K.1^54,K.1^66,-1*K.1^30,K.1^30,-1*K.1^66,-1*K.1^42,K.1^54,K.1^78,-1*K.1^18,K.1^6,K.1^90,-1*K.1^4,-1*K.1^52,-1*K.1^28,K.1^44,K.1^76,K.1^28,K.1^4,K.1^20,K.1^68,K.1^52,-1*K.1^68,-1*K.1^44,K.1^92,-1*K.1^20,-1*K.1^76,-1*K.1^92,K.1^27,-1*K.1^3,K.1^69,-1*K.1^15,K.1^57,-1*K.1^69,K.1^3,K.1^15,-1*K.1^57,K.1^33,-1*K.1^33,-1*K.1^75,K.1^75,K.1^45,-1*K.1^87,-1*K.1^45,K.1^87,K.1^39,K.1^9,K.1^51,-1*K.1^93,-1*K.1^21,-1*K.1^27,K.1^81,-1*K.1^63,-1*K.1^9,-1*K.1^39,-1*K.1^51,K.1^93,-1*K.1^81,K.1^63,K.1^21,-1*K.1^86,K.1^22,-1*K.1^46,-1*K.1^26,K.1^10,-1*K.1^2,K.1^50,-1*K.1^58,-1*K.1^74,K.1^82,K.1^58,-1*K.1^50,-1*K.1^10,K.1^46,K.1^70,-1*K.1^14,K.1^34,K.1^14,K.1^62,K.1^86,-1*K.1^94,K.1^38,K.1^94,-1*K.1^82,-1*K.1^62,K.1^2,-1*K.1^34,K.1^26,K.1^74,-1*K.1^22,-1*K.1^38,-1*K.1^70,-1*K.1^31,K.1^47,-1*K.1^19,K.1^95,K.1^83,K.1^7,K.1^59,K.1^79,K.1^23,K.1^49,-1*K.1^77,K.1^41,K.1^5,K.1^37,K.1^77,K.1^85,K.1^71,-1*K.1^23,-1*K.1^25,-1*K.1^5,-1*K.1^55,-1*K.1^29,K.1^53,-1*K.1^37,K.1^29,K.1^73,-1*K.1^73,-1*K.1^13,K.1^19,K.1^25,-1*K.1^83,-1*K.1^79,K.1^31,K.1^35,K.1^67,-1*K.1^91,-1*K.1^65,-1*K.1^67,-1*K.1^53,K.1^17,-1*K.1^43,-1*K.1^95,K.1^11,-1*K.1^49,K.1^89,K.1^13,K.1,-1*K.1,-1*K.1^71,-1*K.1^7,-1*K.1^59,-1*K.1^41,K.1^65,K.1^61,-1*K.1^11,-1*K.1^17,K.1^91,-1*K.1^85,-1*K.1^35,K.1^55,-1*K.1^89,K.1^43,-1*K.1^61,-1*K.1^47,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^60,-1*K.1^36,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,K.1^36,K.1^60,-1*K.1^40,K.1^8,-1*K.1^56,K.1^88,K.1^40,K.1^56,-1*K.1^88,-1*K.1^8,K.1^6,K.1^90,-1*K.1^78,K.1^18,-1*K.1^54,K.1^42,-1*K.1^30,K.1^66,-1*K.1^66,K.1^30,K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,-1*K.1^90,-1*K.1^6,K.1^92,K.1^44,K.1^68,-1*K.1^52,-1*K.1^20,-1*K.1^68,-1*K.1^92,-1*K.1^76,-1*K.1^28,-1*K.1^44,K.1^28,K.1^52,-1*K.1^4,K.1^76,K.1^20,K.1^4,-1*K.1^69,K.1^93,-1*K.1^27,K.1^81,-1*K.1^39,K.1^27,-1*K.1^93,-1*K.1^81,K.1^39,-1*K.1^63,K.1^63,K.1^21,-1*K.1^21,-1*K.1^51,K.1^9,K.1^51,-1*K.1^9,-1*K.1^57,-1*K.1^87,-1*K.1^45,K.1^3,K.1^75,K.1^69,-1*K.1^15,K.1^33,K.1^87,K.1^57,K.1^45,-1*K.1^3,K.1^15,-1*K.1^33,-1*K.1^75,K.1^10,-1*K.1^74,K.1^50,K.1^70,-1*K.1^86,K.1^94,-1*K.1^46,K.1^38,K.1^22,-1*K.1^14,-1*K.1^38,K.1^46,K.1^86,-1*K.1^50,-1*K.1^26,K.1^82,-1*K.1^62,-1*K.1^82,-1*K.1^34,-1*K.1^10,K.1^2,-1*K.1^58,-1*K.1^2,K.1^14,K.1^34,-1*K.1^94,K.1^62,-1*K.1^70,-1*K.1^22,K.1^74,K.1^58,K.1^26,K.1^65,-1*K.1^49,K.1^77,-1*K.1,-1*K.1^13,-1*K.1^89,-1*K.1^37,-1*K.1^17,-1*K.1^73,-1*K.1^47,K.1^19,-1*K.1^55,-1*K.1^91,-1*K.1^59,-1*K.1^19,-1*K.1^11,-1*K.1^25,K.1^73,K.1^71,K.1^91,K.1^41,K.1^67,-1*K.1^43,K.1^59,-1*K.1^67,-1*K.1^23,K.1^23,K.1^83,-1*K.1^77,-1*K.1^71,K.1^13,K.1^17,-1*K.1^65,-1*K.1^61,-1*K.1^29,K.1^5,K.1^31,K.1^29,K.1^43,-1*K.1^79,K.1^53,K.1,-1*K.1^85,K.1^47,-1*K.1^7,-1*K.1^83,-1*K.1^95,K.1^95,K.1^25,K.1^89,K.1^37,K.1^55,-1*K.1^31,-1*K.1^35,K.1^85,K.1^79,-1*K.1^5,K.1^11,K.1^61,-1*K.1^41,K.1^7,-1*K.1^53,K.1^35,K.1^49,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^84,K.1^12,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,-1*K.1^12,-1*K.1^84,-1*K.1^56,K.1^88,-1*K.1^40,K.1^8,K.1^56,K.1^40,-1*K.1^8,-1*K.1^88,-1*K.1^18,-1*K.1^78,K.1^42,-1*K.1^54,-1*K.1^66,K.1^30,K.1^90,-1*K.1^6,K.1^6,-1*K.1^90,K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,K.1^78,K.1^18,-1*K.1^52,K.1^4,K.1^76,-1*K.1^92,K.1^28,-1*K.1^76,K.1^52,K.1^68,-1*K.1^20,-1*K.1^4,K.1^20,K.1^92,K.1^44,-1*K.1^68,-1*K.1^28,-1*K.1^44,K.1^63,K.1^39,K.1^33,K.1^3,K.1^69,-1*K.1^33,-1*K.1^39,-1*K.1^3,-1*K.1^69,-1*K.1^45,K.1^45,K.1^15,-1*K.1^15,-1*K.1^9,-1*K.1^75,K.1^9,K.1^75,K.1^27,K.1^21,-1*K.1^87,K.1^57,K.1^81,-1*K.1^63,-1*K.1^93,K.1^51,-1*K.1^21,-1*K.1^27,K.1^87,-1*K.1^57,K.1^93,-1*K.1^51,-1*K.1^81,K.1^62,K.1^94,-1*K.1^22,K.1^50,-1*K.1^34,-1*K.1^26,K.1^74,K.1^82,-1*K.1^2,-1*K.1^10,-1*K.1^82,-1*K.1^74,K.1^34,K.1^22,-1*K.1^46,K.1^86,K.1^58,-1*K.1^86,K.1^38,-1*K.1^62,-1*K.1^70,-1*K.1^14,K.1^70,K.1^10,-1*K.1^38,K.1^26,-1*K.1^58,-1*K.1^50,K.1^2,-1*K.1^94,K.1^14,K.1^46,K.1^19,-1*K.1^35,K.1^55,-1*K.1^83,K.1^23,-1*K.1^91,K.1^95,-1*K.1^67,K.1^11,-1*K.1^61,K.1^41,K.1^53,-1*K.1^65,K.1,-1*K.1^41,K.1^49,K.1^59,-1*K.1^11,-1*K.1^37,K.1^65,-1*K.1^43,-1*K.1^89,K.1^17,-1*K.1,K.1^89,K.1^85,-1*K.1^85,-1*K.1^73,-1*K.1^55,K.1^37,-1*K.1^23,K.1^67,-1*K.1^19,-1*K.1^71,K.1^7,K.1^31,K.1^77,-1*K.1^7,-1*K.1^17,-1*K.1^29,-1*K.1^79,K.1^83,K.1^47,K.1^61,-1*K.1^5,K.1^73,-1*K.1^13,K.1^13,-1*K.1^59,K.1^91,-1*K.1^95,-1*K.1^53,-1*K.1^77,-1*K.1^25,-1*K.1^47,K.1^29,-1*K.1^31,-1*K.1^49,K.1^71,K.1^43,K.1^5,K.1^79,K.1^25,K.1^35,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^12,-1*K.1^84,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,K.1^84,K.1^12,K.1^40,-1*K.1^8,K.1^56,-1*K.1^88,-1*K.1^40,-1*K.1^56,K.1^88,K.1^8,K.1^78,K.1^18,-1*K.1^54,K.1^42,K.1^30,-1*K.1^66,-1*K.1^6,K.1^90,-1*K.1^90,K.1^6,-1*K.1^30,K.1^66,-1*K.1^42,K.1^54,-1*K.1^18,-1*K.1^78,K.1^44,-1*K.1^92,-1*K.1^20,K.1^4,-1*K.1^68,K.1^20,-1*K.1^44,-1*K.1^28,K.1^76,K.1^92,-1*K.1^76,-1*K.1^4,-1*K.1^52,K.1^28,K.1^68,K.1^52,-1*K.1^33,-1*K.1^57,-1*K.1^63,-1*K.1^93,-1*K.1^27,K.1^63,K.1^57,K.1^93,K.1^27,K.1^51,-1*K.1^51,-1*K.1^81,K.1^81,K.1^87,K.1^21,-1*K.1^87,-1*K.1^21,-1*K.1^69,-1*K.1^75,K.1^9,-1*K.1^39,-1*K.1^15,K.1^33,K.1^3,-1*K.1^45,K.1^75,K.1^69,-1*K.1^9,K.1^39,-1*K.1^3,K.1^45,K.1^15,-1*K.1^34,-1*K.1^2,K.1^74,-1*K.1^46,K.1^62,K.1^70,-1*K.1^22,-1*K.1^14,K.1^94,K.1^86,K.1^14,K.1^22,-1*K.1^62,-1*K.1^74,K.1^50,-1*K.1^10,-1*K.1^38,K.1^10,-1*K.1^58,K.1^34,K.1^26,K.1^82,-1*K.1^26,-1*K.1^86,K.1^58,-1*K.1^70,K.1^38,K.1^46,-1*K.1^94,K.1^2,-1*K.1^82,-1*K.1^50,-1*K.1^77,K.1^61,-1*K.1^41,K.1^13,-1*K.1^73,K.1^5,-1*K.1,K.1^29,-1*K.1^85,K.1^35,-1*K.1^55,-1*K.1^43,K.1^31,-1*K.1^95,K.1^55,-1*K.1^47,-1*K.1^37,K.1^85,K.1^59,-1*K.1^31,K.1^53,K.1^7,-1*K.1^79,K.1^95,-1*K.1^7,-1*K.1^11,K.1^11,K.1^23,K.1^41,-1*K.1^59,K.1^73,-1*K.1^29,K.1^77,K.1^25,-1*K.1^89,-1*K.1^65,-1*K.1^19,K.1^89,K.1^79,K.1^67,K.1^17,-1*K.1^13,-1*K.1^49,-1*K.1^35,K.1^91,-1*K.1^23,K.1^83,-1*K.1^83,K.1^37,-1*K.1^5,K.1,K.1^43,K.1^19,K.1^71,K.1^49,-1*K.1^67,K.1^65,K.1^47,-1*K.1^25,-1*K.1^53,-1*K.1^91,-1*K.1^17,-1*K.1^71,-1*K.1^61,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^84,K.1^12,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,-1*K.1^12,-1*K.1^84,-1*K.1^56,K.1^88,-1*K.1^40,K.1^8,K.1^56,K.1^40,-1*K.1^8,-1*K.1^88,-1*K.1^18,-1*K.1^78,K.1^42,-1*K.1^54,-1*K.1^66,K.1^30,K.1^90,-1*K.1^6,K.1^6,-1*K.1^90,K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,K.1^78,K.1^18,-1*K.1^52,K.1^4,K.1^76,-1*K.1^92,K.1^28,-1*K.1^76,K.1^52,K.1^68,-1*K.1^20,-1*K.1^4,K.1^20,K.1^92,K.1^44,-1*K.1^68,-1*K.1^28,-1*K.1^44,-1*K.1^63,-1*K.1^39,-1*K.1^33,-1*K.1^3,-1*K.1^69,K.1^33,K.1^39,K.1^3,K.1^69,K.1^45,-1*K.1^45,-1*K.1^15,K.1^15,K.1^9,K.1^75,-1*K.1^9,-1*K.1^75,-1*K.1^27,-1*K.1^21,K.1^87,-1*K.1^57,-1*K.1^81,K.1^63,K.1^93,-1*K.1^51,K.1^21,K.1^27,-1*K.1^87,K.1^57,-1*K.1^93,K.1^51,K.1^81,K.1^62,K.1^94,-1*K.1^22,K.1^50,-1*K.1^34,-1*K.1^26,K.1^74,K.1^82,-1*K.1^2,-1*K.1^10,-1*K.1^82,-1*K.1^74,K.1^34,K.1^22,-1*K.1^46,K.1^86,K.1^58,-1*K.1^86,K.1^38,-1*K.1^62,-1*K.1^70,-1*K.1^14,K.1^70,K.1^10,-1*K.1^38,K.1^26,-1*K.1^58,-1*K.1^50,K.1^2,-1*K.1^94,K.1^14,K.1^46,-1*K.1^19,K.1^35,-1*K.1^55,K.1^83,-1*K.1^23,K.1^91,-1*K.1^95,K.1^67,-1*K.1^11,K.1^61,-1*K.1^41,-1*K.1^53,K.1^65,-1*K.1,K.1^41,-1*K.1^49,-1*K.1^59,K.1^11,K.1^37,-1*K.1^65,K.1^43,K.1^89,-1*K.1^17,K.1,-1*K.1^89,-1*K.1^85,K.1^85,K.1^73,K.1^55,-1*K.1^37,K.1^23,-1*K.1^67,K.1^19,K.1^71,-1*K.1^7,-1*K.1^31,-1*K.1^77,K.1^7,K.1^17,K.1^29,K.1^79,-1*K.1^83,-1*K.1^47,-1*K.1^61,K.1^5,-1*K.1^73,K.1^13,-1*K.1^13,K.1^59,-1*K.1^91,K.1^95,K.1^53,K.1^77,K.1^25,K.1^47,-1*K.1^29,K.1^31,K.1^49,-1*K.1^71,-1*K.1^43,-1*K.1^5,-1*K.1^79,-1*K.1^25,-1*K.1^35,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^12,-1*K.1^84,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,K.1^84,K.1^12,K.1^40,-1*K.1^8,K.1^56,-1*K.1^88,-1*K.1^40,-1*K.1^56,K.1^88,K.1^8,K.1^78,K.1^18,-1*K.1^54,K.1^42,K.1^30,-1*K.1^66,-1*K.1^6,K.1^90,-1*K.1^90,K.1^6,-1*K.1^30,K.1^66,-1*K.1^42,K.1^54,-1*K.1^18,-1*K.1^78,K.1^44,-1*K.1^92,-1*K.1^20,K.1^4,-1*K.1^68,K.1^20,-1*K.1^44,-1*K.1^28,K.1^76,K.1^92,-1*K.1^76,-1*K.1^4,-1*K.1^52,K.1^28,K.1^68,K.1^52,K.1^33,K.1^57,K.1^63,K.1^93,K.1^27,-1*K.1^63,-1*K.1^57,-1*K.1^93,-1*K.1^27,-1*K.1^51,K.1^51,K.1^81,-1*K.1^81,-1*K.1^87,-1*K.1^21,K.1^87,K.1^21,K.1^69,K.1^75,-1*K.1^9,K.1^39,K.1^15,-1*K.1^33,-1*K.1^3,K.1^45,-1*K.1^75,-1*K.1^69,K.1^9,-1*K.1^39,K.1^3,-1*K.1^45,-1*K.1^15,-1*K.1^34,-1*K.1^2,K.1^74,-1*K.1^46,K.1^62,K.1^70,-1*K.1^22,-1*K.1^14,K.1^94,K.1^86,K.1^14,K.1^22,-1*K.1^62,-1*K.1^74,K.1^50,-1*K.1^10,-1*K.1^38,K.1^10,-1*K.1^58,K.1^34,K.1^26,K.1^82,-1*K.1^26,-1*K.1^86,K.1^58,-1*K.1^70,K.1^38,K.1^46,-1*K.1^94,K.1^2,-1*K.1^82,-1*K.1^50,K.1^77,-1*K.1^61,K.1^41,-1*K.1^13,K.1^73,-1*K.1^5,K.1,-1*K.1^29,K.1^85,-1*K.1^35,K.1^55,K.1^43,-1*K.1^31,K.1^95,-1*K.1^55,K.1^47,K.1^37,-1*K.1^85,-1*K.1^59,K.1^31,-1*K.1^53,-1*K.1^7,K.1^79,-1*K.1^95,K.1^7,K.1^11,-1*K.1^11,-1*K.1^23,-1*K.1^41,K.1^59,-1*K.1^73,K.1^29,-1*K.1^77,-1*K.1^25,K.1^89,K.1^65,K.1^19,-1*K.1^89,-1*K.1^79,-1*K.1^67,-1*K.1^17,K.1^13,K.1^49,K.1^35,-1*K.1^91,K.1^23,-1*K.1^83,K.1^83,-1*K.1^37,K.1^5,-1*K.1,-1*K.1^43,-1*K.1^19,-1*K.1^71,-1*K.1^49,K.1^67,-1*K.1^65,-1*K.1^47,K.1^25,K.1^53,K.1^91,K.1^17,K.1^71,K.1^61,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^84,K.1^12,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,-1*K.1^12,-1*K.1^84,-1*K.1^56,K.1^88,-1*K.1^40,K.1^8,K.1^56,K.1^40,-1*K.1^8,-1*K.1^88,K.1^18,K.1^78,-1*K.1^42,K.1^54,K.1^66,-1*K.1^30,-1*K.1^90,K.1^6,-1*K.1^6,K.1^90,-1*K.1^66,K.1^30,-1*K.1^54,K.1^42,-1*K.1^78,-1*K.1^18,-1*K.1^52,K.1^4,K.1^76,-1*K.1^92,K.1^28,-1*K.1^76,K.1^52,K.1^68,-1*K.1^20,-1*K.1^4,K.1^20,K.1^92,K.1^44,-1*K.1^68,-1*K.1^28,-1*K.1^44,-1*K.1^15,K.1^87,-1*K.1^81,K.1^51,K.1^21,K.1^81,-1*K.1^87,-1*K.1^51,-1*K.1^21,K.1^93,-1*K.1^93,K.1^63,-1*K.1^63,K.1^57,K.1^27,-1*K.1^57,-1*K.1^27,K.1^75,-1*K.1^69,K.1^39,K.1^9,K.1^33,K.1^15,-1*K.1^45,-1*K.1^3,K.1^69,-1*K.1^75,-1*K.1^39,-1*K.1^9,K.1^45,K.1^3,-1*K.1^33,-1*K.1^62,-1*K.1^94,K.1^22,-1*K.1^50,K.1^34,K.1^26,-1*K.1^74,-1*K.1^82,K.1^2,K.1^10,K.1^82,K.1^74,-1*K.1^34,-1*K.1^22,K.1^46,-1*K.1^86,-1*K.1^58,K.1^86,-1*K.1^38,K.1^62,K.1^70,K.1^14,-1*K.1^70,-1*K.1^10,K.1^38,-1*K.1^26,K.1^58,K.1^50,-1*K.1^2,K.1^94,-1*K.1^14,-1*K.1^46,K.1^67,-1*K.1^83,-1*K.1^7,K.1^35,K.1^71,K.1^43,-1*K.1^47,K.1^19,K.1^59,-1*K.1^13,-1*K.1^89,K.1^5,-1*K.1^17,-1*K.1^49,K.1^89,K.1,-1*K.1^11,-1*K.1^59,K.1^85,K.1^17,-1*K.1^91,-1*K.1^41,-1*K.1^65,K.1^49,K.1^41,K.1^37,-1*K.1^37,-1*K.1^25,K.1^7,-1*K.1^85,-1*K.1^71,-1*K.1^19,-1*K.1^67,K.1^23,K.1^55,K.1^79,K.1^29,-1*K.1^55,K.1^65,K.1^77,K.1^31,-1*K.1^35,K.1^95,K.1^13,K.1^53,K.1^25,K.1^61,-1*K.1^61,K.1^11,-1*K.1^43,K.1^47,-1*K.1^5,-1*K.1^29,K.1^73,-1*K.1^95,-1*K.1^77,-1*K.1^79,-1*K.1,-1*K.1^23,K.1^91,-1*K.1^53,-1*K.1^31,-1*K.1^73,K.1^83,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^12,-1*K.1^84,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,K.1^84,K.1^12,K.1^40,-1*K.1^8,K.1^56,-1*K.1^88,-1*K.1^40,-1*K.1^56,K.1^88,K.1^8,-1*K.1^78,-1*K.1^18,K.1^54,-1*K.1^42,-1*K.1^30,K.1^66,K.1^6,-1*K.1^90,K.1^90,-1*K.1^6,K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,K.1^18,K.1^78,K.1^44,-1*K.1^92,-1*K.1^20,K.1^4,-1*K.1^68,K.1^20,-1*K.1^44,-1*K.1^28,K.1^76,K.1^92,-1*K.1^76,-1*K.1^4,-1*K.1^52,K.1^28,K.1^68,K.1^52,K.1^81,-1*K.1^9,K.1^15,-1*K.1^45,-1*K.1^75,-1*K.1^15,K.1^9,K.1^45,K.1^75,-1*K.1^3,K.1^3,-1*K.1^33,K.1^33,-1*K.1^39,-1*K.1^69,K.1^39,K.1^69,-1*K.1^21,K.1^27,-1*K.1^57,-1*K.1^87,-1*K.1^63,-1*K.1^81,K.1^51,K.1^93,-1*K.1^27,K.1^21,K.1^57,K.1^87,-1*K.1^51,-1*K.1^93,K.1^63,K.1^34,K.1^2,-1*K.1^74,K.1^46,-1*K.1^62,-1*K.1^70,K.1^22,K.1^14,-1*K.1^94,-1*K.1^86,-1*K.1^14,-1*K.1^22,K.1^62,K.1^74,-1*K.1^50,K.1^10,K.1^38,-1*K.1^10,K.1^58,-1*K.1^34,-1*K.1^26,-1*K.1^82,K.1^26,K.1^86,-1*K.1^58,K.1^70,-1*K.1^38,-1*K.1^46,K.1^94,-1*K.1^2,K.1^82,K.1^50,-1*K.1^29,K.1^13,K.1^89,-1*K.1^61,-1*K.1^25,-1*K.1^53,K.1^49,-1*K.1^77,-1*K.1^37,K.1^83,K.1^7,-1*K.1^91,K.1^79,K.1^47,-1*K.1^7,-1*K.1^95,K.1^85,K.1^37,-1*K.1^11,-1*K.1^79,K.1^5,K.1^55,K.1^31,-1*K.1^47,-1*K.1^55,-1*K.1^59,K.1^59,K.1^71,-1*K.1^89,K.1^11,K.1^25,K.1^77,K.1^29,-1*K.1^73,-1*K.1^41,-1*K.1^17,-1*K.1^67,K.1^41,-1*K.1^31,-1*K.1^19,-1*K.1^65,K.1^61,-1*K.1,-1*K.1^83,-1*K.1^43,-1*K.1^71,-1*K.1^35,K.1^35,-1*K.1^85,K.1^53,-1*K.1^49,K.1^91,K.1^67,-1*K.1^23,K.1,K.1^19,K.1^17,K.1^95,K.1^73,-1*K.1^5,K.1^43,K.1^65,K.1^23,-1*K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,K.1^84,K.1^12,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,-1*K.1^12,-1*K.1^84,-1*K.1^56,K.1^88,-1*K.1^40,K.1^8,K.1^56,K.1^40,-1*K.1^8,-1*K.1^88,K.1^18,K.1^78,-1*K.1^42,K.1^54,K.1^66,-1*K.1^30,-1*K.1^90,K.1^6,-1*K.1^6,K.1^90,-1*K.1^66,K.1^30,-1*K.1^54,K.1^42,-1*K.1^78,-1*K.1^18,-1*K.1^52,K.1^4,K.1^76,-1*K.1^92,K.1^28,-1*K.1^76,K.1^52,K.1^68,-1*K.1^20,-1*K.1^4,K.1^20,K.1^92,K.1^44,-1*K.1^68,-1*K.1^28,-1*K.1^44,K.1^15,-1*K.1^87,K.1^81,-1*K.1^51,-1*K.1^21,-1*K.1^81,K.1^87,K.1^51,K.1^21,-1*K.1^93,K.1^93,-1*K.1^63,K.1^63,-1*K.1^57,-1*K.1^27,K.1^57,K.1^27,-1*K.1^75,K.1^69,-1*K.1^39,-1*K.1^9,-1*K.1^33,-1*K.1^15,K.1^45,K.1^3,-1*K.1^69,K.1^75,K.1^39,K.1^9,-1*K.1^45,-1*K.1^3,K.1^33,-1*K.1^62,-1*K.1^94,K.1^22,-1*K.1^50,K.1^34,K.1^26,-1*K.1^74,-1*K.1^82,K.1^2,K.1^10,K.1^82,K.1^74,-1*K.1^34,-1*K.1^22,K.1^46,-1*K.1^86,-1*K.1^58,K.1^86,-1*K.1^38,K.1^62,K.1^70,K.1^14,-1*K.1^70,-1*K.1^10,K.1^38,-1*K.1^26,K.1^58,K.1^50,-1*K.1^2,K.1^94,-1*K.1^14,-1*K.1^46,-1*K.1^67,K.1^83,K.1^7,-1*K.1^35,-1*K.1^71,-1*K.1^43,K.1^47,-1*K.1^19,-1*K.1^59,K.1^13,K.1^89,-1*K.1^5,K.1^17,K.1^49,-1*K.1^89,-1*K.1,K.1^11,K.1^59,-1*K.1^85,-1*K.1^17,K.1^91,K.1^41,K.1^65,-1*K.1^49,-1*K.1^41,-1*K.1^37,K.1^37,K.1^25,-1*K.1^7,K.1^85,K.1^71,K.1^19,K.1^67,-1*K.1^23,-1*K.1^55,-1*K.1^79,-1*K.1^29,K.1^55,-1*K.1^65,-1*K.1^77,-1*K.1^31,K.1^35,-1*K.1^95,-1*K.1^13,-1*K.1^53,-1*K.1^25,-1*K.1^61,K.1^61,-1*K.1^11,K.1^43,-1*K.1^47,K.1^5,K.1^29,-1*K.1^73,K.1^95,K.1^77,K.1^79,K.1,K.1^23,-1*K.1^91,K.1^53,K.1^31,K.1^73,-1*K.1^83,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,-1*K.1^12,-1*K.1^84,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,K.1^84,K.1^12,K.1^40,-1*K.1^8,K.1^56,-1*K.1^88,-1*K.1^40,-1*K.1^56,K.1^88,K.1^8,-1*K.1^78,-1*K.1^18,K.1^54,-1*K.1^42,-1*K.1^30,K.1^66,K.1^6,-1*K.1^90,K.1^90,-1*K.1^6,K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,K.1^18,K.1^78,K.1^44,-1*K.1^92,-1*K.1^20,K.1^4,-1*K.1^68,K.1^20,-1*K.1^44,-1*K.1^28,K.1^76,K.1^92,-1*K.1^76,-1*K.1^4,-1*K.1^52,K.1^28,K.1^68,K.1^52,-1*K.1^81,K.1^9,-1*K.1^15,K.1^45,K.1^75,K.1^15,-1*K.1^9,-1*K.1^45,-1*K.1^75,K.1^3,-1*K.1^3,K.1^33,-1*K.1^33,K.1^39,K.1^69,-1*K.1^39,-1*K.1^69,K.1^21,-1*K.1^27,K.1^57,K.1^87,K.1^63,K.1^81,-1*K.1^51,-1*K.1^93,K.1^27,-1*K.1^21,-1*K.1^57,-1*K.1^87,K.1^51,K.1^93,-1*K.1^63,K.1^34,K.1^2,-1*K.1^74,K.1^46,-1*K.1^62,-1*K.1^70,K.1^22,K.1^14,-1*K.1^94,-1*K.1^86,-1*K.1^14,-1*K.1^22,K.1^62,K.1^74,-1*K.1^50,K.1^10,K.1^38,-1*K.1^10,K.1^58,-1*K.1^34,-1*K.1^26,-1*K.1^82,K.1^26,K.1^86,-1*K.1^58,K.1^70,-1*K.1^38,-1*K.1^46,K.1^94,-1*K.1^2,K.1^82,K.1^50,K.1^29,-1*K.1^13,-1*K.1^89,K.1^61,K.1^25,K.1^53,-1*K.1^49,K.1^77,K.1^37,-1*K.1^83,-1*K.1^7,K.1^91,-1*K.1^79,-1*K.1^47,K.1^7,K.1^95,-1*K.1^85,-1*K.1^37,K.1^11,K.1^79,-1*K.1^5,-1*K.1^55,-1*K.1^31,K.1^47,K.1^55,K.1^59,-1*K.1^59,-1*K.1^71,K.1^89,-1*K.1^11,-1*K.1^25,-1*K.1^77,-1*K.1^29,K.1^73,K.1^41,K.1^17,K.1^67,-1*K.1^41,K.1^31,K.1^19,K.1^65,-1*K.1^61,K.1,K.1^83,K.1^43,K.1^71,K.1^35,-1*K.1^35,K.1^85,-1*K.1^53,K.1^49,-1*K.1^91,-1*K.1^67,K.1^23,-1*K.1,-1*K.1^19,-1*K.1^17,-1*K.1^95,-1*K.1^73,K.1^5,-1*K.1^43,-1*K.1^65,-1*K.1^23,K.1^13,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^84,-1*K.1^12,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,K.1^12,K.1^84,-1*K.1^56,K.1^88,-1*K.1^40,K.1^8,K.1^56,K.1^40,-1*K.1^8,-1*K.1^88,K.1^66,K.1^30,-1*K.1^90,K.1^6,-1*K.1^18,K.1^78,K.1^42,-1*K.1^54,K.1^54,-1*K.1^42,K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,-1*K.1^30,-1*K.1^66,K.1^52,-1*K.1^4,-1*K.1^76,K.1^92,-1*K.1^28,K.1^76,-1*K.1^52,-1*K.1^68,K.1^20,K.1^4,-1*K.1^20,-1*K.1^92,-1*K.1^44,K.1^68,K.1^28,K.1^44,K.1^87,K.1^63,K.1^9,-1*K.1^27,-1*K.1^45,-1*K.1^9,-1*K.1^63,K.1^27,K.1^45,K.1^21,-1*K.1^21,K.1^39,-1*K.1^39,K.1^81,-1*K.1^3,-1*K.1^81,K.1^3,-1*K.1^51,K.1^93,K.1^15,K.1^33,K.1^57,-1*K.1^87,K.1^69,-1*K.1^75,-1*K.1^93,K.1^51,-1*K.1^15,-1*K.1^33,-1*K.1^69,K.1^75,-1*K.1^57,-1*K.1^14,-1*K.1^46,-1*K.1^70,K.1^2,K.1^82,K.1^74,K.1^26,K.1^34,K.1^50,K.1^58,-1*K.1^34,-1*K.1^26,-1*K.1^82,K.1^70,-1*K.1^94,-1*K.1^38,K.1^10,K.1^38,K.1^86,K.1^14,K.1^22,-1*K.1^62,-1*K.1^22,-1*K.1^58,-1*K.1^86,-1*K.1^74,-1*K.1^10,-1*K.1^2,-1*K.1^50,K.1^46,K.1^62,K.1^94,-1*K.1^43,K.1^59,K.1^79,-1*K.1^11,K.1^47,-1*K.1^19,-1*K.1^23,K.1^91,-1*K.1^35,K.1^37,K.1^17,-1*K.1^29,-1*K.1^41,-1*K.1^73,-1*K.1^17,K.1^25,-1*K.1^83,K.1^35,K.1^13,K.1^41,K.1^67,-1*K.1^65,-1*K.1^89,K.1^73,K.1^65,-1*K.1^61,K.1^61,-1*K.1^49,-1*K.1^79,-1*K.1^13,-1*K.1^47,-1*K.1^91,K.1^43,-1*K.1^95,K.1^31,K.1^55,-1*K.1^53,-1*K.1^31,K.1^89,K.1^5,K.1^7,K.1^11,K.1^71,-1*K.1^37,-1*K.1^77,K.1^49,-1*K.1^85,K.1^85,K.1^83,K.1^19,K.1^23,K.1^29,K.1^53,-1*K.1,-1*K.1^71,-1*K.1^5,-1*K.1^55,-1*K.1^25,K.1^95,-1*K.1^67,K.1^77,-1*K.1^7,K.1,-1*K.1^59,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^12,K.1^84,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,-1*K.1^84,-1*K.1^12,K.1^40,-1*K.1^8,K.1^56,-1*K.1^88,-1*K.1^40,-1*K.1^56,K.1^88,K.1^8,-1*K.1^30,-1*K.1^66,K.1^6,-1*K.1^90,K.1^78,-1*K.1^18,-1*K.1^54,K.1^42,-1*K.1^42,K.1^54,-1*K.1^78,K.1^18,K.1^90,-1*K.1^6,K.1^66,K.1^30,-1*K.1^44,K.1^92,K.1^20,-1*K.1^4,K.1^68,-1*K.1^20,K.1^44,K.1^28,-1*K.1^76,-1*K.1^92,K.1^76,K.1^4,K.1^52,-1*K.1^28,-1*K.1^68,-1*K.1^52,-1*K.1^9,-1*K.1^33,-1*K.1^87,K.1^69,K.1^51,K.1^87,K.1^33,-1*K.1^69,-1*K.1^51,-1*K.1^75,K.1^75,-1*K.1^57,K.1^57,-1*K.1^15,K.1^93,K.1^15,-1*K.1^93,K.1^45,-1*K.1^3,-1*K.1^81,-1*K.1^63,-1*K.1^39,K.1^9,-1*K.1^27,K.1^21,K.1^3,-1*K.1^45,K.1^81,K.1^63,K.1^27,-1*K.1^21,K.1^39,K.1^82,K.1^50,K.1^26,-1*K.1^94,-1*K.1^14,-1*K.1^22,-1*K.1^70,-1*K.1^62,-1*K.1^46,-1*K.1^38,K.1^62,K.1^70,K.1^14,-1*K.1^26,K.1^2,K.1^58,-1*K.1^86,-1*K.1^58,-1*K.1^10,-1*K.1^82,-1*K.1^74,K.1^34,K.1^74,K.1^38,K.1^10,K.1^22,K.1^86,K.1^94,K.1^46,-1*K.1^50,-1*K.1^34,-1*K.1^2,K.1^53,-1*K.1^37,-1*K.1^17,K.1^85,-1*K.1^49,K.1^77,K.1^73,-1*K.1^5,K.1^61,-1*K.1^59,-1*K.1^79,K.1^67,K.1^55,K.1^23,K.1^79,-1*K.1^71,K.1^13,-1*K.1^61,-1*K.1^83,-1*K.1^55,-1*K.1^29,K.1^31,K.1^7,-1*K.1^23,-1*K.1^31,K.1^35,-1*K.1^35,K.1^47,K.1^17,K.1^83,K.1^49,K.1^5,-1*K.1^53,K.1,-1*K.1^65,-1*K.1^41,K.1^43,K.1^65,-1*K.1^7,-1*K.1^91,-1*K.1^89,-1*K.1^85,-1*K.1^25,K.1^59,K.1^19,-1*K.1^47,K.1^11,-1*K.1^11,-1*K.1^13,-1*K.1^77,-1*K.1^73,-1*K.1^67,-1*K.1^43,K.1^95,K.1^25,K.1^91,K.1^41,K.1^71,-1*K.1,K.1^29,-1*K.1^19,K.1^89,-1*K.1^95,K.1^37,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^84,-1*K.1^12,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,K.1^12,K.1^84,-1*K.1^56,K.1^88,-1*K.1^40,K.1^8,K.1^56,K.1^40,-1*K.1^8,-1*K.1^88,K.1^66,K.1^30,-1*K.1^90,K.1^6,-1*K.1^18,K.1^78,K.1^42,-1*K.1^54,K.1^54,-1*K.1^42,K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,-1*K.1^30,-1*K.1^66,K.1^52,-1*K.1^4,-1*K.1^76,K.1^92,-1*K.1^28,K.1^76,-1*K.1^52,-1*K.1^68,K.1^20,K.1^4,-1*K.1^20,-1*K.1^92,-1*K.1^44,K.1^68,K.1^28,K.1^44,-1*K.1^87,-1*K.1^63,-1*K.1^9,K.1^27,K.1^45,K.1^9,K.1^63,-1*K.1^27,-1*K.1^45,-1*K.1^21,K.1^21,-1*K.1^39,K.1^39,-1*K.1^81,K.1^3,K.1^81,-1*K.1^3,K.1^51,-1*K.1^93,-1*K.1^15,-1*K.1^33,-1*K.1^57,K.1^87,-1*K.1^69,K.1^75,K.1^93,-1*K.1^51,K.1^15,K.1^33,K.1^69,-1*K.1^75,K.1^57,-1*K.1^14,-1*K.1^46,-1*K.1^70,K.1^2,K.1^82,K.1^74,K.1^26,K.1^34,K.1^50,K.1^58,-1*K.1^34,-1*K.1^26,-1*K.1^82,K.1^70,-1*K.1^94,-1*K.1^38,K.1^10,K.1^38,K.1^86,K.1^14,K.1^22,-1*K.1^62,-1*K.1^22,-1*K.1^58,-1*K.1^86,-1*K.1^74,-1*K.1^10,-1*K.1^2,-1*K.1^50,K.1^46,K.1^62,K.1^94,K.1^43,-1*K.1^59,-1*K.1^79,K.1^11,-1*K.1^47,K.1^19,K.1^23,-1*K.1^91,K.1^35,-1*K.1^37,-1*K.1^17,K.1^29,K.1^41,K.1^73,K.1^17,-1*K.1^25,K.1^83,-1*K.1^35,-1*K.1^13,-1*K.1^41,-1*K.1^67,K.1^65,K.1^89,-1*K.1^73,-1*K.1^65,K.1^61,-1*K.1^61,K.1^49,K.1^79,K.1^13,K.1^47,K.1^91,-1*K.1^43,K.1^95,-1*K.1^31,-1*K.1^55,K.1^53,K.1^31,-1*K.1^89,-1*K.1^5,-1*K.1^7,-1*K.1^11,-1*K.1^71,K.1^37,K.1^77,-1*K.1^49,K.1^85,-1*K.1^85,-1*K.1^83,-1*K.1^19,-1*K.1^23,-1*K.1^29,-1*K.1^53,K.1,K.1^71,K.1^5,K.1^55,K.1^25,-1*K.1^95,K.1^67,-1*K.1^77,K.1^7,-1*K.1,K.1^59,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^12,K.1^84,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,-1*K.1^84,-1*K.1^12,K.1^40,-1*K.1^8,K.1^56,-1*K.1^88,-1*K.1^40,-1*K.1^56,K.1^88,K.1^8,-1*K.1^30,-1*K.1^66,K.1^6,-1*K.1^90,K.1^78,-1*K.1^18,-1*K.1^54,K.1^42,-1*K.1^42,K.1^54,-1*K.1^78,K.1^18,K.1^90,-1*K.1^6,K.1^66,K.1^30,-1*K.1^44,K.1^92,K.1^20,-1*K.1^4,K.1^68,-1*K.1^20,K.1^44,K.1^28,-1*K.1^76,-1*K.1^92,K.1^76,K.1^4,K.1^52,-1*K.1^28,-1*K.1^68,-1*K.1^52,K.1^9,K.1^33,K.1^87,-1*K.1^69,-1*K.1^51,-1*K.1^87,-1*K.1^33,K.1^69,K.1^51,K.1^75,-1*K.1^75,K.1^57,-1*K.1^57,K.1^15,-1*K.1^93,-1*K.1^15,K.1^93,-1*K.1^45,K.1^3,K.1^81,K.1^63,K.1^39,-1*K.1^9,K.1^27,-1*K.1^21,-1*K.1^3,K.1^45,-1*K.1^81,-1*K.1^63,-1*K.1^27,K.1^21,-1*K.1^39,K.1^82,K.1^50,K.1^26,-1*K.1^94,-1*K.1^14,-1*K.1^22,-1*K.1^70,-1*K.1^62,-1*K.1^46,-1*K.1^38,K.1^62,K.1^70,K.1^14,-1*K.1^26,K.1^2,K.1^58,-1*K.1^86,-1*K.1^58,-1*K.1^10,-1*K.1^82,-1*K.1^74,K.1^34,K.1^74,K.1^38,K.1^10,K.1^22,K.1^86,K.1^94,K.1^46,-1*K.1^50,-1*K.1^34,-1*K.1^2,-1*K.1^53,K.1^37,K.1^17,-1*K.1^85,K.1^49,-1*K.1^77,-1*K.1^73,K.1^5,-1*K.1^61,K.1^59,K.1^79,-1*K.1^67,-1*K.1^55,-1*K.1^23,-1*K.1^79,K.1^71,-1*K.1^13,K.1^61,K.1^83,K.1^55,K.1^29,-1*K.1^31,-1*K.1^7,K.1^23,K.1^31,-1*K.1^35,K.1^35,-1*K.1^47,-1*K.1^17,-1*K.1^83,-1*K.1^49,-1*K.1^5,K.1^53,-1*K.1,K.1^65,K.1^41,-1*K.1^43,-1*K.1^65,K.1^7,K.1^91,K.1^89,K.1^85,K.1^25,-1*K.1^59,-1*K.1^19,K.1^47,-1*K.1^11,K.1^11,K.1^13,K.1^77,K.1^73,K.1^67,K.1^43,-1*K.1^95,-1*K.1^25,-1*K.1^91,-1*K.1^41,-1*K.1^71,K.1,-1*K.1^29,K.1^19,-1*K.1^89,K.1^95,-1*K.1^37,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^84,-1*K.1^12,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,K.1^12,K.1^84,-1*K.1^56,K.1^88,-1*K.1^40,K.1^8,K.1^56,K.1^40,-1*K.1^8,-1*K.1^88,-1*K.1^66,-1*K.1^30,K.1^90,-1*K.1^6,K.1^18,-1*K.1^78,-1*K.1^42,K.1^54,-1*K.1^54,K.1^42,-1*K.1^18,K.1^78,K.1^6,-1*K.1^90,K.1^30,K.1^66,K.1^52,-1*K.1^4,-1*K.1^76,K.1^92,-1*K.1^28,K.1^76,-1*K.1^52,-1*K.1^68,K.1^20,K.1^4,-1*K.1^20,-1*K.1^92,-1*K.1^44,K.1^68,K.1^28,K.1^44,-1*K.1^39,-1*K.1^15,-1*K.1^57,-1*K.1^75,K.1^93,K.1^57,K.1^15,K.1^75,-1*K.1^93,-1*K.1^69,K.1^69,K.1^87,-1*K.1^87,K.1^33,-1*K.1^51,-1*K.1^33,K.1^51,K.1^3,K.1^45,K.1^63,-1*K.1^81,K.1^9,K.1^39,K.1^21,K.1^27,-1*K.1^45,-1*K.1^3,-1*K.1^63,K.1^81,-1*K.1^21,-1*K.1^27,-1*K.1^9,K.1^14,K.1^46,K.1^70,-1*K.1^2,-1*K.1^82,-1*K.1^74,-1*K.1^26,-1*K.1^34,-1*K.1^50,-1*K.1^58,K.1^34,K.1^26,K.1^82,-1*K.1^70,K.1^94,K.1^38,-1*K.1^10,-1*K.1^38,-1*K.1^86,-1*K.1^14,-1*K.1^22,K.1^62,K.1^22,K.1^58,K.1^86,K.1^74,K.1^10,K.1^2,K.1^50,-1*K.1^46,-1*K.1^62,-1*K.1^94,-1*K.1^91,-1*K.1^11,-1*K.1^31,-1*K.1^59,K.1^95,-1*K.1^67,-1*K.1^71,-1*K.1^43,-1*K.1^83,-1*K.1^85,-1*K.1^65,K.1^77,K.1^89,-1*K.1^25,K.1^65,-1*K.1^73,K.1^35,K.1^83,-1*K.1^61,-1*K.1^89,-1*K.1^19,-1*K.1^17,-1*K.1^41,K.1^25,K.1^17,-1*K.1^13,K.1^13,-1*K.1,K.1^31,K.1^61,-1*K.1^95,K.1^43,K.1^91,K.1^47,K.1^79,-1*K.1^7,-1*K.1^5,-1*K.1^79,K.1^41,-1*K.1^53,K.1^55,K.1^59,-1*K.1^23,K.1^85,-1*K.1^29,K.1,-1*K.1^37,K.1^37,-1*K.1^35,K.1^67,K.1^71,-1*K.1^77,K.1^5,K.1^49,K.1^23,K.1^53,K.1^7,K.1^73,-1*K.1^47,K.1^19,K.1^29,-1*K.1^55,-1*K.1^49,K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^12,K.1^84,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,-1*K.1^84,-1*K.1^12,K.1^40,-1*K.1^8,K.1^56,-1*K.1^88,-1*K.1^40,-1*K.1^56,K.1^88,K.1^8,K.1^30,K.1^66,-1*K.1^6,K.1^90,-1*K.1^78,K.1^18,K.1^54,-1*K.1^42,K.1^42,-1*K.1^54,K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,-1*K.1^66,-1*K.1^30,-1*K.1^44,K.1^92,K.1^20,-1*K.1^4,K.1^68,-1*K.1^20,K.1^44,K.1^28,-1*K.1^76,-1*K.1^92,K.1^76,K.1^4,K.1^52,-1*K.1^28,-1*K.1^68,-1*K.1^52,K.1^57,K.1^81,K.1^39,K.1^21,-1*K.1^3,-1*K.1^39,-1*K.1^81,-1*K.1^21,K.1^3,K.1^27,-1*K.1^27,-1*K.1^9,K.1^9,-1*K.1^63,K.1^45,K.1^63,-1*K.1^45,-1*K.1^93,-1*K.1^51,-1*K.1^33,K.1^15,-1*K.1^87,-1*K.1^57,-1*K.1^75,-1*K.1^69,K.1^51,K.1^93,K.1^33,-1*K.1^15,K.1^75,K.1^69,K.1^87,-1*K.1^82,-1*K.1^50,-1*K.1^26,K.1^94,K.1^14,K.1^22,K.1^70,K.1^62,K.1^46,K.1^38,-1*K.1^62,-1*K.1^70,-1*K.1^14,K.1^26,-1*K.1^2,-1*K.1^58,K.1^86,K.1^58,K.1^10,K.1^82,K.1^74,-1*K.1^34,-1*K.1^74,-1*K.1^38,-1*K.1^10,-1*K.1^22,-1*K.1^86,-1*K.1^94,-1*K.1^46,K.1^50,K.1^34,K.1^2,K.1^5,K.1^85,K.1^65,K.1^37,-1*K.1,K.1^29,K.1^25,K.1^53,K.1^13,K.1^11,K.1^31,-1*K.1^19,-1*K.1^7,K.1^71,-1*K.1^31,K.1^23,-1*K.1^61,-1*K.1^13,K.1^35,K.1^7,K.1^77,K.1^79,K.1^55,-1*K.1^71,-1*K.1^79,K.1^83,-1*K.1^83,K.1^95,-1*K.1^65,-1*K.1^35,K.1,-1*K.1^53,-1*K.1^5,-1*K.1^49,-1*K.1^17,K.1^89,K.1^91,K.1^17,-1*K.1^55,K.1^43,-1*K.1^41,-1*K.1^37,K.1^73,-1*K.1^11,K.1^67,-1*K.1^95,K.1^59,-1*K.1^59,K.1^61,-1*K.1^29,-1*K.1^25,K.1^19,-1*K.1^91,-1*K.1^47,-1*K.1^73,-1*K.1^43,-1*K.1^89,-1*K.1^23,K.1^49,-1*K.1^77,-1*K.1^67,K.1^41,K.1^47,-1*K.1^85,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,-1*K.1^48,K.1^48,-1*K.1^64,K.1^32,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^80,-1*K.1^16,K.1^16,-1*K.1^80,-1*K.1^84,-1*K.1^12,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,K.1^12,K.1^84,-1*K.1^56,K.1^88,-1*K.1^40,K.1^8,K.1^56,K.1^40,-1*K.1^8,-1*K.1^88,-1*K.1^66,-1*K.1^30,K.1^90,-1*K.1^6,K.1^18,-1*K.1^78,-1*K.1^42,K.1^54,-1*K.1^54,K.1^42,-1*K.1^18,K.1^78,K.1^6,-1*K.1^90,K.1^30,K.1^66,K.1^52,-1*K.1^4,-1*K.1^76,K.1^92,-1*K.1^28,K.1^76,-1*K.1^52,-1*K.1^68,K.1^20,K.1^4,-1*K.1^20,-1*K.1^92,-1*K.1^44,K.1^68,K.1^28,K.1^44,K.1^39,K.1^15,K.1^57,K.1^75,-1*K.1^93,-1*K.1^57,-1*K.1^15,-1*K.1^75,K.1^93,K.1^69,-1*K.1^69,-1*K.1^87,K.1^87,-1*K.1^33,K.1^51,K.1^33,-1*K.1^51,-1*K.1^3,-1*K.1^45,-1*K.1^63,K.1^81,-1*K.1^9,-1*K.1^39,-1*K.1^21,-1*K.1^27,K.1^45,K.1^3,K.1^63,-1*K.1^81,K.1^21,K.1^27,K.1^9,K.1^14,K.1^46,K.1^70,-1*K.1^2,-1*K.1^82,-1*K.1^74,-1*K.1^26,-1*K.1^34,-1*K.1^50,-1*K.1^58,K.1^34,K.1^26,K.1^82,-1*K.1^70,K.1^94,K.1^38,-1*K.1^10,-1*K.1^38,-1*K.1^86,-1*K.1^14,-1*K.1^22,K.1^62,K.1^22,K.1^58,K.1^86,K.1^74,K.1^10,K.1^2,K.1^50,-1*K.1^46,-1*K.1^62,-1*K.1^94,K.1^91,K.1^11,K.1^31,K.1^59,-1*K.1^95,K.1^67,K.1^71,K.1^43,K.1^83,K.1^85,K.1^65,-1*K.1^77,-1*K.1^89,K.1^25,-1*K.1^65,K.1^73,-1*K.1^35,-1*K.1^83,K.1^61,K.1^89,K.1^19,K.1^17,K.1^41,-1*K.1^25,-1*K.1^17,K.1^13,-1*K.1^13,K.1,-1*K.1^31,-1*K.1^61,K.1^95,-1*K.1^43,-1*K.1^91,-1*K.1^47,-1*K.1^79,K.1^7,K.1^5,K.1^79,-1*K.1^41,K.1^53,-1*K.1^55,-1*K.1^59,K.1^23,-1*K.1^85,K.1^29,-1*K.1,K.1^37,-1*K.1^37,K.1^35,-1*K.1^67,-1*K.1^71,K.1^77,-1*K.1^5,-1*K.1^49,-1*K.1^23,-1*K.1^53,-1*K.1^7,-1*K.1^73,K.1^47,-1*K.1^19,-1*K.1^29,K.1^55,K.1^49,-1*K.1^11,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,K.1^48,-1*K.1^48,K.1^32,-1*K.1^64,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^16,K.1^80,-1*K.1^80,K.1^16,K.1^12,K.1^84,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,-1*K.1^84,-1*K.1^12,K.1^40,-1*K.1^8,K.1^56,-1*K.1^88,-1*K.1^40,-1*K.1^56,K.1^88,K.1^8,K.1^30,K.1^66,-1*K.1^6,K.1^90,-1*K.1^78,K.1^18,K.1^54,-1*K.1^42,K.1^42,-1*K.1^54,K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,-1*K.1^66,-1*K.1^30,-1*K.1^44,K.1^92,K.1^20,-1*K.1^4,K.1^68,-1*K.1^20,K.1^44,K.1^28,-1*K.1^76,-1*K.1^92,K.1^76,K.1^4,K.1^52,-1*K.1^28,-1*K.1^68,-1*K.1^52,-1*K.1^57,-1*K.1^81,-1*K.1^39,-1*K.1^21,K.1^3,K.1^39,K.1^81,K.1^21,-1*K.1^3,-1*K.1^27,K.1^27,K.1^9,-1*K.1^9,K.1^63,-1*K.1^45,-1*K.1^63,K.1^45,K.1^93,K.1^51,K.1^33,-1*K.1^15,K.1^87,K.1^57,K.1^75,K.1^69,-1*K.1^51,-1*K.1^93,-1*K.1^33,K.1^15,-1*K.1^75,-1*K.1^69,-1*K.1^87,-1*K.1^82,-1*K.1^50,-1*K.1^26,K.1^94,K.1^14,K.1^22,K.1^70,K.1^62,K.1^46,K.1^38,-1*K.1^62,-1*K.1^70,-1*K.1^14,K.1^26,-1*K.1^2,-1*K.1^58,K.1^86,K.1^58,K.1^10,K.1^82,K.1^74,-1*K.1^34,-1*K.1^74,-1*K.1^38,-1*K.1^10,-1*K.1^22,-1*K.1^86,-1*K.1^94,-1*K.1^46,K.1^50,K.1^34,K.1^2,-1*K.1^5,-1*K.1^85,-1*K.1^65,-1*K.1^37,K.1,-1*K.1^29,-1*K.1^25,-1*K.1^53,-1*K.1^13,-1*K.1^11,-1*K.1^31,K.1^19,K.1^7,-1*K.1^71,K.1^31,-1*K.1^23,K.1^61,K.1^13,-1*K.1^35,-1*K.1^7,-1*K.1^77,-1*K.1^79,-1*K.1^55,K.1^71,K.1^79,-1*K.1^83,K.1^83,-1*K.1^95,K.1^65,K.1^35,-1*K.1,K.1^53,K.1^5,K.1^49,K.1^17,-1*K.1^89,-1*K.1^91,-1*K.1^17,K.1^55,-1*K.1^43,K.1^41,K.1^37,-1*K.1^73,K.1^11,-1*K.1^67,K.1^95,-1*K.1^59,K.1^59,-1*K.1^61,K.1^29,K.1^25,-1*K.1^19,K.1^91,K.1^47,K.1^73,K.1^43,K.1^89,K.1^23,-1*K.1^49,K.1^77,K.1^67,-1*K.1^41,-1*K.1^47,K.1^85,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^60,K.1^36,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,-1*K.1^36,-1*K.1^60,K.1^8,-1*K.1^40,K.1^88,-1*K.1^56,-1*K.1^8,-1*K.1^88,K.1^56,K.1^40,K.1^54,K.1^42,K.1^30,-1*K.1^66,K.1^6,-1*K.1^90,-1*K.1^78,K.1^18,-1*K.1^18,K.1^78,-1*K.1^6,K.1^90,K.1^66,-1*K.1^30,-1*K.1^42,-1*K.1^54,-1*K.1^28,K.1^76,-1*K.1^4,-1*K.1^20,-1*K.1^52,K.1^4,K.1^28,-1*K.1^44,K.1^92,-1*K.1^76,-1*K.1^92,K.1^20,K.1^68,K.1^44,K.1^52,-1*K.1^68,-1*K.1^45,K.1^69,-1*K.1^51,-1*K.1^57,K.1^63,K.1^51,-1*K.1^69,K.1^57,-1*K.1^63,K.1^87,-1*K.1^87,-1*K.1^93,K.1^93,-1*K.1^75,K.1^81,K.1^75,-1*K.1^81,K.1^33,-1*K.1^15,-1*K.1^21,K.1^27,-1*K.1^3,K.1^45,K.1^39,-1*K.1^9,K.1^15,-1*K.1^33,K.1^21,-1*K.1^27,-1*K.1^39,K.1^9,K.1^3,K.1^26,K.1^58,-1*K.1^34,-1*K.1^86,-1*K.1^70,K.1^14,K.1^62,K.1^22,-1*K.1^38,K.1^94,-1*K.1^22,-1*K.1^62,K.1^70,K.1^34,K.1^10,-1*K.1^2,-1*K.1^46,K.1^2,-1*K.1^50,-1*K.1^26,K.1^82,-1*K.1^74,-1*K.1^82,-1*K.1^94,K.1^50,-1*K.1^14,K.1^46,K.1^86,K.1^38,-1*K.1^58,K.1^74,-1*K.1^10,K.1^73,K.1^89,-1*K.1^85,K.1^41,-1*K.1^53,K.1,-1*K.1^77,-1*K.1^25,-1*K.1^17,K.1^7,-1*K.1^11,-1*K.1^47,K.1^83,-1*K.1^19,K.1^11,K.1^67,K.1^65,K.1^17,-1*K.1^31,-1*K.1^83,K.1^49,-1*K.1^59,K.1^35,K.1^19,K.1^59,-1*K.1^79,K.1^79,K.1^43,K.1^85,K.1^31,K.1^53,K.1^25,-1*K.1^73,K.1^5,K.1^37,-1*K.1^13,K.1^23,-1*K.1^37,-1*K.1^35,-1*K.1^71,-1*K.1^61,-1*K.1^41,K.1^29,-1*K.1^7,K.1^95,-1*K.1^43,K.1^55,-1*K.1^55,-1*K.1^65,-1*K.1,K.1^77,K.1^47,-1*K.1^23,K.1^91,-1*K.1^29,K.1^71,K.1^13,-1*K.1^67,-1*K.1^5,-1*K.1^49,-1*K.1^95,K.1^61,-1*K.1^91,-1*K.1^89,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^36,-1*K.1^60,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,K.1^60,K.1^36,-1*K.1^88,K.1^56,-1*K.1^8,K.1^40,K.1^88,K.1^8,-1*K.1^40,-1*K.1^56,-1*K.1^42,-1*K.1^54,-1*K.1^66,K.1^30,-1*K.1^90,K.1^6,K.1^18,-1*K.1^78,K.1^78,-1*K.1^18,K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,K.1^54,K.1^42,K.1^68,-1*K.1^20,K.1^92,K.1^76,K.1^44,-1*K.1^92,-1*K.1^68,K.1^52,-1*K.1^4,K.1^20,K.1^4,-1*K.1^76,-1*K.1^28,-1*K.1^52,-1*K.1^44,K.1^28,K.1^51,-1*K.1^27,K.1^45,K.1^39,-1*K.1^33,-1*K.1^45,K.1^27,-1*K.1^39,K.1^33,-1*K.1^9,K.1^9,K.1^3,-1*K.1^3,K.1^21,-1*K.1^15,-1*K.1^21,K.1^15,-1*K.1^63,K.1^81,K.1^75,-1*K.1^69,K.1^93,-1*K.1^51,-1*K.1^57,K.1^87,-1*K.1^81,K.1^63,-1*K.1^75,K.1^69,K.1^57,-1*K.1^87,-1*K.1^93,-1*K.1^70,-1*K.1^38,K.1^62,K.1^10,K.1^26,-1*K.1^82,-1*K.1^34,-1*K.1^74,K.1^58,-1*K.1^2,K.1^74,K.1^34,-1*K.1^26,-1*K.1^62,-1*K.1^86,K.1^94,K.1^50,-1*K.1^94,K.1^46,K.1^70,-1*K.1^14,K.1^22,K.1^14,K.1^2,-1*K.1^46,K.1^82,-1*K.1^50,-1*K.1^10,-1*K.1^58,K.1^38,-1*K.1^22,K.1^86,-1*K.1^23,-1*K.1^7,K.1^11,-1*K.1^55,K.1^43,-1*K.1^95,K.1^19,K.1^71,K.1^79,-1*K.1^89,K.1^85,K.1^49,-1*K.1^13,K.1^77,-1*K.1^85,-1*K.1^29,-1*K.1^31,-1*K.1^79,K.1^65,K.1^13,-1*K.1^47,K.1^37,-1*K.1^61,-1*K.1^77,-1*K.1^37,K.1^17,-1*K.1^17,-1*K.1^53,-1*K.1^11,-1*K.1^65,-1*K.1^43,-1*K.1^71,K.1^23,-1*K.1^91,-1*K.1^59,K.1^83,-1*K.1^73,K.1^59,K.1^61,K.1^25,K.1^35,K.1^55,-1*K.1^67,K.1^89,-1*K.1,K.1^53,-1*K.1^41,K.1^41,K.1^31,K.1^95,-1*K.1^19,-1*K.1^49,K.1^73,-1*K.1^5,K.1^67,-1*K.1^25,-1*K.1^83,K.1^29,K.1^91,K.1^47,K.1,-1*K.1^35,K.1^5,K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^60,K.1^36,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,-1*K.1^36,-1*K.1^60,K.1^8,-1*K.1^40,K.1^88,-1*K.1^56,-1*K.1^8,-1*K.1^88,K.1^56,K.1^40,K.1^54,K.1^42,K.1^30,-1*K.1^66,K.1^6,-1*K.1^90,-1*K.1^78,K.1^18,-1*K.1^18,K.1^78,-1*K.1^6,K.1^90,K.1^66,-1*K.1^30,-1*K.1^42,-1*K.1^54,-1*K.1^28,K.1^76,-1*K.1^4,-1*K.1^20,-1*K.1^52,K.1^4,K.1^28,-1*K.1^44,K.1^92,-1*K.1^76,-1*K.1^92,K.1^20,K.1^68,K.1^44,K.1^52,-1*K.1^68,K.1^45,-1*K.1^69,K.1^51,K.1^57,-1*K.1^63,-1*K.1^51,K.1^69,-1*K.1^57,K.1^63,-1*K.1^87,K.1^87,K.1^93,-1*K.1^93,K.1^75,-1*K.1^81,-1*K.1^75,K.1^81,-1*K.1^33,K.1^15,K.1^21,-1*K.1^27,K.1^3,-1*K.1^45,-1*K.1^39,K.1^9,-1*K.1^15,K.1^33,-1*K.1^21,K.1^27,K.1^39,-1*K.1^9,-1*K.1^3,K.1^26,K.1^58,-1*K.1^34,-1*K.1^86,-1*K.1^70,K.1^14,K.1^62,K.1^22,-1*K.1^38,K.1^94,-1*K.1^22,-1*K.1^62,K.1^70,K.1^34,K.1^10,-1*K.1^2,-1*K.1^46,K.1^2,-1*K.1^50,-1*K.1^26,K.1^82,-1*K.1^74,-1*K.1^82,-1*K.1^94,K.1^50,-1*K.1^14,K.1^46,K.1^86,K.1^38,-1*K.1^58,K.1^74,-1*K.1^10,-1*K.1^73,-1*K.1^89,K.1^85,-1*K.1^41,K.1^53,-1*K.1,K.1^77,K.1^25,K.1^17,-1*K.1^7,K.1^11,K.1^47,-1*K.1^83,K.1^19,-1*K.1^11,-1*K.1^67,-1*K.1^65,-1*K.1^17,K.1^31,K.1^83,-1*K.1^49,K.1^59,-1*K.1^35,-1*K.1^19,-1*K.1^59,K.1^79,-1*K.1^79,-1*K.1^43,-1*K.1^85,-1*K.1^31,-1*K.1^53,-1*K.1^25,K.1^73,-1*K.1^5,-1*K.1^37,K.1^13,-1*K.1^23,K.1^37,K.1^35,K.1^71,K.1^61,K.1^41,-1*K.1^29,K.1^7,-1*K.1^95,K.1^43,-1*K.1^55,K.1^55,K.1^65,K.1,-1*K.1^77,-1*K.1^47,K.1^23,-1*K.1^91,K.1^29,-1*K.1^71,-1*K.1^13,K.1^67,K.1^5,K.1^49,K.1^95,-1*K.1^61,K.1^91,K.1^89,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^36,-1*K.1^60,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,K.1^60,K.1^36,-1*K.1^88,K.1^56,-1*K.1^8,K.1^40,K.1^88,K.1^8,-1*K.1^40,-1*K.1^56,-1*K.1^42,-1*K.1^54,-1*K.1^66,K.1^30,-1*K.1^90,K.1^6,K.1^18,-1*K.1^78,K.1^78,-1*K.1^18,K.1^90,-1*K.1^6,-1*K.1^30,K.1^66,K.1^54,K.1^42,K.1^68,-1*K.1^20,K.1^92,K.1^76,K.1^44,-1*K.1^92,-1*K.1^68,K.1^52,-1*K.1^4,K.1^20,K.1^4,-1*K.1^76,-1*K.1^28,-1*K.1^52,-1*K.1^44,K.1^28,-1*K.1^51,K.1^27,-1*K.1^45,-1*K.1^39,K.1^33,K.1^45,-1*K.1^27,K.1^39,-1*K.1^33,K.1^9,-1*K.1^9,-1*K.1^3,K.1^3,-1*K.1^21,K.1^15,K.1^21,-1*K.1^15,K.1^63,-1*K.1^81,-1*K.1^75,K.1^69,-1*K.1^93,K.1^51,K.1^57,-1*K.1^87,K.1^81,-1*K.1^63,K.1^75,-1*K.1^69,-1*K.1^57,K.1^87,K.1^93,-1*K.1^70,-1*K.1^38,K.1^62,K.1^10,K.1^26,-1*K.1^82,-1*K.1^34,-1*K.1^74,K.1^58,-1*K.1^2,K.1^74,K.1^34,-1*K.1^26,-1*K.1^62,-1*K.1^86,K.1^94,K.1^50,-1*K.1^94,K.1^46,K.1^70,-1*K.1^14,K.1^22,K.1^14,K.1^2,-1*K.1^46,K.1^82,-1*K.1^50,-1*K.1^10,-1*K.1^58,K.1^38,-1*K.1^22,K.1^86,K.1^23,K.1^7,-1*K.1^11,K.1^55,-1*K.1^43,K.1^95,-1*K.1^19,-1*K.1^71,-1*K.1^79,K.1^89,-1*K.1^85,-1*K.1^49,K.1^13,-1*K.1^77,K.1^85,K.1^29,K.1^31,K.1^79,-1*K.1^65,-1*K.1^13,K.1^47,-1*K.1^37,K.1^61,K.1^77,K.1^37,-1*K.1^17,K.1^17,K.1^53,K.1^11,K.1^65,K.1^43,K.1^71,-1*K.1^23,K.1^91,K.1^59,-1*K.1^83,K.1^73,-1*K.1^59,-1*K.1^61,-1*K.1^25,-1*K.1^35,-1*K.1^55,K.1^67,-1*K.1^89,K.1,-1*K.1^53,K.1^41,-1*K.1^41,-1*K.1^31,-1*K.1^95,K.1^19,K.1^49,-1*K.1^73,K.1^5,-1*K.1^67,K.1^25,K.1^83,-1*K.1^29,-1*K.1^91,-1*K.1^47,-1*K.1,K.1^35,-1*K.1^5,-1*K.1^7,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^60,K.1^36,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,-1*K.1^36,-1*K.1^60,K.1^8,-1*K.1^40,K.1^88,-1*K.1^56,-1*K.1^8,-1*K.1^88,K.1^56,K.1^40,-1*K.1^54,-1*K.1^42,-1*K.1^30,K.1^66,-1*K.1^6,K.1^90,K.1^78,-1*K.1^18,K.1^18,-1*K.1^78,K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,K.1^42,K.1^54,-1*K.1^28,K.1^76,-1*K.1^4,-1*K.1^20,-1*K.1^52,K.1^4,K.1^28,-1*K.1^44,K.1^92,-1*K.1^76,-1*K.1^92,K.1^20,K.1^68,K.1^44,K.1^52,-1*K.1^68,K.1^93,K.1^21,K.1^3,-1*K.1^9,-1*K.1^15,-1*K.1^3,-1*K.1^21,K.1^9,K.1^15,-1*K.1^39,K.1^39,-1*K.1^45,K.1^45,K.1^27,K.1^33,-1*K.1^27,-1*K.1^33,-1*K.1^81,-1*K.1^63,K.1^69,K.1^75,-1*K.1^51,-1*K.1^93,K.1^87,K.1^57,K.1^63,K.1^81,-1*K.1^69,-1*K.1^75,-1*K.1^87,-1*K.1^57,K.1^51,-1*K.1^26,-1*K.1^58,K.1^34,K.1^86,K.1^70,-1*K.1^14,-1*K.1^62,-1*K.1^22,K.1^38,-1*K.1^94,K.1^22,K.1^62,-1*K.1^70,-1*K.1^34,-1*K.1^10,K.1^2,K.1^46,-1*K.1^2,K.1^50,K.1^26,-1*K.1^82,K.1^74,K.1^82,K.1^94,-1*K.1^50,K.1^14,-1*K.1^46,-1*K.1^86,-1*K.1^38,K.1^58,-1*K.1^74,K.1^10,K.1^25,K.1^41,-1*K.1^37,-1*K.1^89,-1*K.1^5,-1*K.1^49,-1*K.1^29,K.1^73,K.1^65,K.1^55,-1*K.1^59,-1*K.1^95,-1*K.1^35,-1*K.1^67,K.1^59,-1*K.1^19,K.1^17,-1*K.1^65,-1*K.1^79,K.1^35,K.1,K.1^11,K.1^83,K.1^67,-1*K.1^11,K.1^31,-1*K.1^31,K.1^91,K.1^37,K.1^79,K.1^5,-1*K.1^73,-1*K.1^25,-1*K.1^53,-1*K.1^85,K.1^61,K.1^71,K.1^85,-1*K.1^83,K.1^23,-1*K.1^13,K.1^89,-1*K.1^77,-1*K.1^55,-1*K.1^47,-1*K.1^91,-1*K.1^7,K.1^7,-1*K.1^17,K.1^49,K.1^29,K.1^95,-1*K.1^71,-1*K.1^43,K.1^77,-1*K.1^23,-1*K.1^61,K.1^19,K.1^53,-1*K.1,K.1^47,K.1^13,K.1^43,-1*K.1^41,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^36,-1*K.1^60,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,K.1^60,K.1^36,-1*K.1^88,K.1^56,-1*K.1^8,K.1^40,K.1^88,K.1^8,-1*K.1^40,-1*K.1^56,K.1^42,K.1^54,K.1^66,-1*K.1^30,K.1^90,-1*K.1^6,-1*K.1^18,K.1^78,-1*K.1^78,K.1^18,-1*K.1^90,K.1^6,K.1^30,-1*K.1^66,-1*K.1^54,-1*K.1^42,K.1^68,-1*K.1^20,K.1^92,K.1^76,K.1^44,-1*K.1^92,-1*K.1^68,K.1^52,-1*K.1^4,K.1^20,K.1^4,-1*K.1^76,-1*K.1^28,-1*K.1^52,-1*K.1^44,K.1^28,-1*K.1^3,-1*K.1^75,-1*K.1^93,K.1^87,K.1^81,K.1^93,K.1^75,-1*K.1^87,-1*K.1^81,K.1^57,-1*K.1^57,K.1^51,-1*K.1^51,-1*K.1^69,-1*K.1^63,K.1^69,K.1^63,K.1^15,K.1^33,-1*K.1^27,-1*K.1^21,K.1^45,K.1^3,-1*K.1^9,-1*K.1^39,-1*K.1^33,-1*K.1^15,K.1^27,K.1^21,K.1^9,K.1^39,-1*K.1^45,K.1^70,K.1^38,-1*K.1^62,-1*K.1^10,-1*K.1^26,K.1^82,K.1^34,K.1^74,-1*K.1^58,K.1^2,-1*K.1^74,-1*K.1^34,K.1^26,K.1^62,K.1^86,-1*K.1^94,-1*K.1^50,K.1^94,-1*K.1^46,-1*K.1^70,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,K.1^46,-1*K.1^82,K.1^50,K.1^10,K.1^58,-1*K.1^38,K.1^22,-1*K.1^86,-1*K.1^71,-1*K.1^55,K.1^59,K.1^7,K.1^91,K.1^47,K.1^67,-1*K.1^23,-1*K.1^31,-1*K.1^41,K.1^37,K.1,K.1^61,K.1^29,-1*K.1^37,K.1^77,-1*K.1^79,K.1^31,K.1^17,-1*K.1^61,-1*K.1^95,-1*K.1^85,-1*K.1^13,-1*K.1^29,K.1^85,-1*K.1^65,K.1^65,-1*K.1^5,-1*K.1^59,-1*K.1^17,-1*K.1^91,K.1^23,K.1^71,K.1^43,K.1^11,-1*K.1^35,-1*K.1^25,-1*K.1^11,K.1^13,-1*K.1^73,K.1^83,-1*K.1^7,K.1^19,K.1^41,K.1^49,K.1^5,K.1^89,-1*K.1^89,K.1^79,-1*K.1^47,-1*K.1^67,-1*K.1,K.1^25,K.1^53,-1*K.1^19,K.1^73,K.1^35,-1*K.1^77,-1*K.1^43,K.1^95,-1*K.1^49,-1*K.1^83,-1*K.1^53,K.1^55,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^60,K.1^36,-1*K.1^84,K.1^12,K.1^84,-1*K.1^12,-1*K.1^36,-1*K.1^60,K.1^8,-1*K.1^40,K.1^88,-1*K.1^56,-1*K.1^8,-1*K.1^88,K.1^56,K.1^40,-1*K.1^54,-1*K.1^42,-1*K.1^30,K.1^66,-1*K.1^6,K.1^90,K.1^78,-1*K.1^18,K.1^18,-1*K.1^78,K.1^6,-1*K.1^90,-1*K.1^66,K.1^30,K.1^42,K.1^54,-1*K.1^28,K.1^76,-1*K.1^4,-1*K.1^20,-1*K.1^52,K.1^4,K.1^28,-1*K.1^44,K.1^92,-1*K.1^76,-1*K.1^92,K.1^20,K.1^68,K.1^44,K.1^52,-1*K.1^68,-1*K.1^93,-1*K.1^21,-1*K.1^3,K.1^9,K.1^15,K.1^3,K.1^21,-1*K.1^9,-1*K.1^15,K.1^39,-1*K.1^39,K.1^45,-1*K.1^45,-1*K.1^27,-1*K.1^33,K.1^27,K.1^33,K.1^81,K.1^63,-1*K.1^69,-1*K.1^75,K.1^51,K.1^93,-1*K.1^87,-1*K.1^57,-1*K.1^63,-1*K.1^81,K.1^69,K.1^75,K.1^87,K.1^57,-1*K.1^51,-1*K.1^26,-1*K.1^58,K.1^34,K.1^86,K.1^70,-1*K.1^14,-1*K.1^62,-1*K.1^22,K.1^38,-1*K.1^94,K.1^22,K.1^62,-1*K.1^70,-1*K.1^34,-1*K.1^10,K.1^2,K.1^46,-1*K.1^2,K.1^50,K.1^26,-1*K.1^82,K.1^74,K.1^82,K.1^94,-1*K.1^50,K.1^14,-1*K.1^46,-1*K.1^86,-1*K.1^38,K.1^58,-1*K.1^74,K.1^10,-1*K.1^25,-1*K.1^41,K.1^37,K.1^89,K.1^5,K.1^49,K.1^29,-1*K.1^73,-1*K.1^65,-1*K.1^55,K.1^59,K.1^95,K.1^35,K.1^67,-1*K.1^59,K.1^19,-1*K.1^17,K.1^65,K.1^79,-1*K.1^35,-1*K.1,-1*K.1^11,-1*K.1^83,-1*K.1^67,K.1^11,-1*K.1^31,K.1^31,-1*K.1^91,-1*K.1^37,-1*K.1^79,-1*K.1^5,K.1^73,K.1^25,K.1^53,K.1^85,-1*K.1^61,-1*K.1^71,-1*K.1^85,K.1^83,-1*K.1^23,K.1^13,-1*K.1^89,K.1^77,K.1^55,K.1^47,K.1^91,K.1^7,-1*K.1^7,K.1^17,-1*K.1^49,-1*K.1^29,-1*K.1^95,K.1^71,K.1^43,-1*K.1^77,K.1^23,K.1^61,-1*K.1^19,-1*K.1^53,K.1,-1*K.1^47,-1*K.1^13,-1*K.1^43,K.1^41,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^36,-1*K.1^60,K.1^12,-1*K.1^84,-1*K.1^12,K.1^84,K.1^60,K.1^36,-1*K.1^88,K.1^56,-1*K.1^8,K.1^40,K.1^88,K.1^8,-1*K.1^40,-1*K.1^56,K.1^42,K.1^54,K.1^66,-1*K.1^30,K.1^90,-1*K.1^6,-1*K.1^18,K.1^78,-1*K.1^78,K.1^18,-1*K.1^90,K.1^6,K.1^30,-1*K.1^66,-1*K.1^54,-1*K.1^42,K.1^68,-1*K.1^20,K.1^92,K.1^76,K.1^44,-1*K.1^92,-1*K.1^68,K.1^52,-1*K.1^4,K.1^20,K.1^4,-1*K.1^76,-1*K.1^28,-1*K.1^52,-1*K.1^44,K.1^28,K.1^3,K.1^75,K.1^93,-1*K.1^87,-1*K.1^81,-1*K.1^93,-1*K.1^75,K.1^87,K.1^81,-1*K.1^57,K.1^57,-1*K.1^51,K.1^51,K.1^69,K.1^63,-1*K.1^69,-1*K.1^63,-1*K.1^15,-1*K.1^33,K.1^27,K.1^21,-1*K.1^45,-1*K.1^3,K.1^9,K.1^39,K.1^33,K.1^15,-1*K.1^27,-1*K.1^21,-1*K.1^9,-1*K.1^39,K.1^45,K.1^70,K.1^38,-1*K.1^62,-1*K.1^10,-1*K.1^26,K.1^82,K.1^34,K.1^74,-1*K.1^58,K.1^2,-1*K.1^74,-1*K.1^34,K.1^26,K.1^62,K.1^86,-1*K.1^94,-1*K.1^50,K.1^94,-1*K.1^46,-1*K.1^70,K.1^14,-1*K.1^22,-1*K.1^14,-1*K.1^2,K.1^46,-1*K.1^82,K.1^50,K.1^10,K.1^58,-1*K.1^38,K.1^22,-1*K.1^86,K.1^71,K.1^55,-1*K.1^59,-1*K.1^7,-1*K.1^91,-1*K.1^47,-1*K.1^67,K.1^23,K.1^31,K.1^41,-1*K.1^37,-1*K.1,-1*K.1^61,-1*K.1^29,K.1^37,-1*K.1^77,K.1^79,-1*K.1^31,-1*K.1^17,K.1^61,K.1^95,K.1^85,K.1^13,K.1^29,-1*K.1^85,K.1^65,-1*K.1^65,K.1^5,K.1^59,K.1^17,K.1^91,-1*K.1^23,-1*K.1^71,-1*K.1^43,-1*K.1^11,K.1^35,K.1^25,K.1^11,-1*K.1^13,K.1^73,-1*K.1^83,K.1^7,-1*K.1^19,-1*K.1^41,-1*K.1^49,-1*K.1^5,-1*K.1^89,K.1^89,-1*K.1^79,K.1^47,K.1^67,K.1,-1*K.1^25,-1*K.1^53,K.1^19,-1*K.1^73,-1*K.1^35,K.1^77,K.1^43,-1*K.1^95,K.1^49,K.1^83,K.1^53,-1*K.1^55,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^60,-1*K.1^36,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,K.1^36,K.1^60,K.1^8,-1*K.1^40,K.1^88,-1*K.1^56,-1*K.1^8,-1*K.1^88,K.1^56,K.1^40,-1*K.1^6,-1*K.1^90,K.1^78,-1*K.1^18,K.1^54,-1*K.1^42,K.1^30,-1*K.1^66,K.1^66,-1*K.1^30,-1*K.1^54,K.1^42,K.1^18,-1*K.1^78,K.1^90,K.1^6,K.1^28,-1*K.1^76,K.1^4,K.1^20,K.1^52,-1*K.1^4,-1*K.1^28,K.1^44,-1*K.1^92,K.1^76,K.1^92,-1*K.1^20,-1*K.1^68,-1*K.1^44,-1*K.1^52,K.1^68,-1*K.1^21,K.1^45,-1*K.1^75,K.1^33,-1*K.1^87,K.1^75,-1*K.1^45,-1*K.1^33,K.1^87,K.1^15,-1*K.1^15,-1*K.1^69,K.1^69,K.1^3,-1*K.1^57,-1*K.1^3,K.1^57,-1*K.1^9,K.1^39,K.1^93,K.1^51,-1*K.1^27,K.1^21,-1*K.1^63,-1*K.1^81,-1*K.1^39,K.1^9,-1*K.1^93,-1*K.1^51,K.1^63,K.1^81,K.1^27,-1*K.1^74,K.1^10,K.1^82,K.1^38,K.1^22,K.1^62,-1*K.1^14,K.1^70,-1*K.1^86,-1*K.1^46,-1*K.1^70,K.1^14,-1*K.1^22,-1*K.1^82,-1*K.1^58,K.1^50,-1*K.1^94,-1*K.1^50,-1*K.1^2,K.1^74,K.1^34,-1*K.1^26,-1*K.1^34,K.1^46,K.1^2,-1*K.1^62,K.1^94,-1*K.1^38,K.1^86,-1*K.1^10,K.1^26,K.1^58,-1*K.1^49,-1*K.1^65,-1*K.1^61,-1*K.1^17,-1*K.1^29,K.1^73,-1*K.1^53,K.1,-1*K.1^89,-1*K.1^31,-1*K.1^35,K.1^71,-1*K.1^11,-1*K.1^43,K.1^35,K.1^91,-1*K.1^41,K.1^89,K.1^55,K.1^11,-1*K.1^25,-1*K.1^83,K.1^59,K.1^43,K.1^83,-1*K.1^7,K.1^7,K.1^67,K.1^61,-1*K.1^55,K.1^29,-1*K.1,K.1^49,-1*K.1^77,K.1^13,K.1^85,-1*K.1^47,-1*K.1^13,-1*K.1^59,K.1^95,-1*K.1^37,K.1^17,K.1^5,K.1^31,K.1^23,-1*K.1^67,-1*K.1^79,K.1^79,K.1^41,-1*K.1^73,K.1^53,-1*K.1^71,K.1^47,-1*K.1^19,-1*K.1^5,-1*K.1^95,-1*K.1^85,-1*K.1^91,K.1^77,K.1^25,-1*K.1^23,K.1^37,K.1^19,K.1^65,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^36,K.1^60,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,-1*K.1^60,-1*K.1^36,-1*K.1^88,K.1^56,-1*K.1^8,K.1^40,K.1^88,K.1^8,-1*K.1^40,-1*K.1^56,K.1^90,K.1^6,-1*K.1^18,K.1^78,-1*K.1^42,K.1^54,-1*K.1^66,K.1^30,-1*K.1^30,K.1^66,K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,-1*K.1^6,-1*K.1^90,-1*K.1^68,K.1^20,-1*K.1^92,-1*K.1^76,-1*K.1^44,K.1^92,K.1^68,-1*K.1^52,K.1^4,-1*K.1^20,-1*K.1^4,K.1^76,K.1^28,K.1^52,K.1^44,-1*K.1^28,K.1^75,-1*K.1^51,K.1^21,-1*K.1^63,K.1^9,-1*K.1^21,K.1^51,K.1^63,-1*K.1^9,-1*K.1^81,K.1^81,K.1^27,-1*K.1^27,-1*K.1^93,K.1^39,K.1^93,-1*K.1^39,K.1^87,-1*K.1^57,-1*K.1^3,-1*K.1^45,K.1^69,-1*K.1^75,K.1^33,K.1^15,K.1^57,-1*K.1^87,K.1^3,K.1^45,-1*K.1^33,-1*K.1^15,-1*K.1^69,K.1^22,-1*K.1^86,-1*K.1^14,-1*K.1^58,-1*K.1^74,-1*K.1^34,K.1^82,-1*K.1^26,K.1^10,K.1^50,K.1^26,-1*K.1^82,K.1^74,K.1^14,K.1^38,-1*K.1^46,K.1^2,K.1^46,K.1^94,-1*K.1^22,-1*K.1^62,K.1^70,K.1^62,-1*K.1^50,-1*K.1^94,K.1^34,-1*K.1^2,K.1^58,-1*K.1^10,K.1^86,-1*K.1^70,-1*K.1^38,K.1^47,K.1^31,K.1^35,K.1^79,K.1^67,-1*K.1^23,K.1^43,-1*K.1^95,K.1^7,K.1^65,K.1^61,-1*K.1^25,K.1^85,K.1^53,-1*K.1^61,-1*K.1^5,K.1^55,-1*K.1^7,-1*K.1^41,-1*K.1^85,K.1^71,K.1^13,-1*K.1^37,-1*K.1^53,-1*K.1^13,K.1^89,-1*K.1^89,-1*K.1^29,-1*K.1^35,K.1^41,-1*K.1^67,K.1^95,-1*K.1^47,K.1^19,-1*K.1^83,-1*K.1^11,K.1^49,K.1^83,K.1^37,-1*K.1,K.1^59,-1*K.1^79,-1*K.1^91,-1*K.1^65,-1*K.1^73,K.1^29,K.1^17,-1*K.1^17,-1*K.1^55,K.1^23,-1*K.1^43,K.1^25,-1*K.1^49,K.1^77,K.1^91,K.1,K.1^11,K.1^5,-1*K.1^19,-1*K.1^71,K.1^73,-1*K.1^59,-1*K.1^77,-1*K.1^31,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^60,-1*K.1^36,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,K.1^36,K.1^60,K.1^8,-1*K.1^40,K.1^88,-1*K.1^56,-1*K.1^8,-1*K.1^88,K.1^56,K.1^40,-1*K.1^6,-1*K.1^90,K.1^78,-1*K.1^18,K.1^54,-1*K.1^42,K.1^30,-1*K.1^66,K.1^66,-1*K.1^30,-1*K.1^54,K.1^42,K.1^18,-1*K.1^78,K.1^90,K.1^6,K.1^28,-1*K.1^76,K.1^4,K.1^20,K.1^52,-1*K.1^4,-1*K.1^28,K.1^44,-1*K.1^92,K.1^76,K.1^92,-1*K.1^20,-1*K.1^68,-1*K.1^44,-1*K.1^52,K.1^68,K.1^21,-1*K.1^45,K.1^75,-1*K.1^33,K.1^87,-1*K.1^75,K.1^45,K.1^33,-1*K.1^87,-1*K.1^15,K.1^15,K.1^69,-1*K.1^69,-1*K.1^3,K.1^57,K.1^3,-1*K.1^57,K.1^9,-1*K.1^39,-1*K.1^93,-1*K.1^51,K.1^27,-1*K.1^21,K.1^63,K.1^81,K.1^39,-1*K.1^9,K.1^93,K.1^51,-1*K.1^63,-1*K.1^81,-1*K.1^27,-1*K.1^74,K.1^10,K.1^82,K.1^38,K.1^22,K.1^62,-1*K.1^14,K.1^70,-1*K.1^86,-1*K.1^46,-1*K.1^70,K.1^14,-1*K.1^22,-1*K.1^82,-1*K.1^58,K.1^50,-1*K.1^94,-1*K.1^50,-1*K.1^2,K.1^74,K.1^34,-1*K.1^26,-1*K.1^34,K.1^46,K.1^2,-1*K.1^62,K.1^94,-1*K.1^38,K.1^86,-1*K.1^10,K.1^26,K.1^58,K.1^49,K.1^65,K.1^61,K.1^17,K.1^29,-1*K.1^73,K.1^53,-1*K.1,K.1^89,K.1^31,K.1^35,-1*K.1^71,K.1^11,K.1^43,-1*K.1^35,-1*K.1^91,K.1^41,-1*K.1^89,-1*K.1^55,-1*K.1^11,K.1^25,K.1^83,-1*K.1^59,-1*K.1^43,-1*K.1^83,K.1^7,-1*K.1^7,-1*K.1^67,-1*K.1^61,K.1^55,-1*K.1^29,K.1,-1*K.1^49,K.1^77,-1*K.1^13,-1*K.1^85,K.1^47,K.1^13,K.1^59,-1*K.1^95,K.1^37,-1*K.1^17,-1*K.1^5,-1*K.1^31,-1*K.1^23,K.1^67,K.1^79,-1*K.1^79,-1*K.1^41,K.1^73,-1*K.1^53,K.1^71,-1*K.1^47,K.1^19,K.1^5,K.1^95,K.1^85,K.1^91,-1*K.1^77,-1*K.1^25,K.1^23,-1*K.1^37,-1*K.1^19,-1*K.1^65,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^36,K.1^60,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,-1*K.1^60,-1*K.1^36,-1*K.1^88,K.1^56,-1*K.1^8,K.1^40,K.1^88,K.1^8,-1*K.1^40,-1*K.1^56,K.1^90,K.1^6,-1*K.1^18,K.1^78,-1*K.1^42,K.1^54,-1*K.1^66,K.1^30,-1*K.1^30,K.1^66,K.1^42,-1*K.1^54,-1*K.1^78,K.1^18,-1*K.1^6,-1*K.1^90,-1*K.1^68,K.1^20,-1*K.1^92,-1*K.1^76,-1*K.1^44,K.1^92,K.1^68,-1*K.1^52,K.1^4,-1*K.1^20,-1*K.1^4,K.1^76,K.1^28,K.1^52,K.1^44,-1*K.1^28,-1*K.1^75,K.1^51,-1*K.1^21,K.1^63,-1*K.1^9,K.1^21,-1*K.1^51,-1*K.1^63,K.1^9,K.1^81,-1*K.1^81,-1*K.1^27,K.1^27,K.1^93,-1*K.1^39,-1*K.1^93,K.1^39,-1*K.1^87,K.1^57,K.1^3,K.1^45,-1*K.1^69,K.1^75,-1*K.1^33,-1*K.1^15,-1*K.1^57,K.1^87,-1*K.1^3,-1*K.1^45,K.1^33,K.1^15,K.1^69,K.1^22,-1*K.1^86,-1*K.1^14,-1*K.1^58,-1*K.1^74,-1*K.1^34,K.1^82,-1*K.1^26,K.1^10,K.1^50,K.1^26,-1*K.1^82,K.1^74,K.1^14,K.1^38,-1*K.1^46,K.1^2,K.1^46,K.1^94,-1*K.1^22,-1*K.1^62,K.1^70,K.1^62,-1*K.1^50,-1*K.1^94,K.1^34,-1*K.1^2,K.1^58,-1*K.1^10,K.1^86,-1*K.1^70,-1*K.1^38,-1*K.1^47,-1*K.1^31,-1*K.1^35,-1*K.1^79,-1*K.1^67,K.1^23,-1*K.1^43,K.1^95,-1*K.1^7,-1*K.1^65,-1*K.1^61,K.1^25,-1*K.1^85,-1*K.1^53,K.1^61,K.1^5,-1*K.1^55,K.1^7,K.1^41,K.1^85,-1*K.1^71,-1*K.1^13,K.1^37,K.1^53,K.1^13,-1*K.1^89,K.1^89,K.1^29,K.1^35,-1*K.1^41,K.1^67,-1*K.1^95,K.1^47,-1*K.1^19,K.1^83,K.1^11,-1*K.1^49,-1*K.1^83,-1*K.1^37,K.1,-1*K.1^59,K.1^79,K.1^91,K.1^65,K.1^73,-1*K.1^29,-1*K.1^17,K.1^17,K.1^55,-1*K.1^23,K.1^43,-1*K.1^25,K.1^49,-1*K.1^77,-1*K.1^91,-1*K.1,-1*K.1^11,-1*K.1^5,K.1^19,K.1^71,-1*K.1^73,K.1^59,K.1^77,K.1^31,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^60,-1*K.1^36,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,K.1^36,K.1^60,K.1^8,-1*K.1^40,K.1^88,-1*K.1^56,-1*K.1^8,-1*K.1^88,K.1^56,K.1^40,K.1^6,K.1^90,-1*K.1^78,K.1^18,-1*K.1^54,K.1^42,-1*K.1^30,K.1^66,-1*K.1^66,K.1^30,K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,-1*K.1^90,-1*K.1^6,K.1^28,-1*K.1^76,K.1^4,K.1^20,K.1^52,-1*K.1^4,-1*K.1^28,K.1^44,-1*K.1^92,K.1^76,K.1^92,-1*K.1^20,-1*K.1^68,-1*K.1^44,-1*K.1^52,K.1^68,K.1^69,-1*K.1^93,K.1^27,-1*K.1^81,K.1^39,-1*K.1^27,K.1^93,K.1^81,-1*K.1^39,K.1^63,-1*K.1^63,-1*K.1^21,K.1^21,K.1^51,-1*K.1^9,-1*K.1^51,K.1^9,K.1^57,K.1^87,K.1^45,-1*K.1^3,-1*K.1^75,-1*K.1^69,K.1^15,-1*K.1^33,-1*K.1^87,-1*K.1^57,-1*K.1^45,K.1^3,-1*K.1^15,K.1^33,K.1^75,K.1^74,-1*K.1^10,-1*K.1^82,-1*K.1^38,-1*K.1^22,-1*K.1^62,K.1^14,-1*K.1^70,K.1^86,K.1^46,K.1^70,-1*K.1^14,K.1^22,K.1^82,K.1^58,-1*K.1^50,K.1^94,K.1^50,K.1^2,-1*K.1^74,-1*K.1^34,K.1^26,K.1^34,-1*K.1^46,-1*K.1^2,K.1^62,-1*K.1^94,K.1^38,-1*K.1^86,K.1^10,-1*K.1^26,-1*K.1^58,-1*K.1,-1*K.1^17,-1*K.1^13,K.1^65,K.1^77,K.1^25,-1*K.1^5,-1*K.1^49,-1*K.1^41,-1*K.1^79,-1*K.1^83,-1*K.1^23,-1*K.1^59,-1*K.1^91,K.1^83,-1*K.1^43,K.1^89,K.1^41,-1*K.1^7,K.1^59,K.1^73,K.1^35,-1*K.1^11,K.1^91,-1*K.1^35,-1*K.1^55,K.1^55,-1*K.1^19,K.1^13,K.1^7,-1*K.1^77,K.1^49,K.1,-1*K.1^29,-1*K.1^61,K.1^37,-1*K.1^95,K.1^61,K.1^11,-1*K.1^47,K.1^85,-1*K.1^65,-1*K.1^53,K.1^79,K.1^71,K.1^19,K.1^31,-1*K.1^31,-1*K.1^89,-1*K.1^25,K.1^5,K.1^23,K.1^95,-1*K.1^67,K.1^53,K.1^47,-1*K.1^37,K.1^43,K.1^29,-1*K.1^73,-1*K.1^71,-1*K.1^85,K.1^67,K.1^17,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^36,K.1^60,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,-1*K.1^60,-1*K.1^36,-1*K.1^88,K.1^56,-1*K.1^8,K.1^40,K.1^88,K.1^8,-1*K.1^40,-1*K.1^56,-1*K.1^90,-1*K.1^6,K.1^18,-1*K.1^78,K.1^42,-1*K.1^54,K.1^66,-1*K.1^30,K.1^30,-1*K.1^66,-1*K.1^42,K.1^54,K.1^78,-1*K.1^18,K.1^6,K.1^90,-1*K.1^68,K.1^20,-1*K.1^92,-1*K.1^76,-1*K.1^44,K.1^92,K.1^68,-1*K.1^52,K.1^4,-1*K.1^20,-1*K.1^4,K.1^76,K.1^28,K.1^52,K.1^44,-1*K.1^28,-1*K.1^27,K.1^3,-1*K.1^69,K.1^15,-1*K.1^57,K.1^69,-1*K.1^3,-1*K.1^15,K.1^57,-1*K.1^33,K.1^33,K.1^75,-1*K.1^75,-1*K.1^45,K.1^87,K.1^45,-1*K.1^87,-1*K.1^39,-1*K.1^9,-1*K.1^51,K.1^93,K.1^21,K.1^27,-1*K.1^81,K.1^63,K.1^9,K.1^39,K.1^51,-1*K.1^93,K.1^81,-1*K.1^63,-1*K.1^21,-1*K.1^22,K.1^86,K.1^14,K.1^58,K.1^74,K.1^34,-1*K.1^82,K.1^26,-1*K.1^10,-1*K.1^50,-1*K.1^26,K.1^82,-1*K.1^74,-1*K.1^14,-1*K.1^38,K.1^46,-1*K.1^2,-1*K.1^46,-1*K.1^94,K.1^22,K.1^62,-1*K.1^70,-1*K.1^62,K.1^50,K.1^94,-1*K.1^34,K.1^2,-1*K.1^58,K.1^10,-1*K.1^86,K.1^70,K.1^38,K.1^95,K.1^79,K.1^83,-1*K.1^31,-1*K.1^19,-1*K.1^71,K.1^91,K.1^47,K.1^55,K.1^17,K.1^13,K.1^73,K.1^37,K.1^5,-1*K.1^13,K.1^53,-1*K.1^7,-1*K.1^55,K.1^89,-1*K.1^37,-1*K.1^23,-1*K.1^61,K.1^85,-1*K.1^5,K.1^61,K.1^41,-1*K.1^41,K.1^77,-1*K.1^83,-1*K.1^89,K.1^19,-1*K.1^47,-1*K.1^95,K.1^67,K.1^35,-1*K.1^59,K.1,-1*K.1^35,-1*K.1^85,K.1^49,-1*K.1^11,K.1^31,K.1^43,-1*K.1^17,-1*K.1^25,-1*K.1^77,-1*K.1^65,K.1^65,K.1^7,K.1^71,-1*K.1^91,-1*K.1^73,-1*K.1,K.1^29,-1*K.1^43,-1*K.1^49,K.1^59,-1*K.1^53,-1*K.1^67,K.1^23,K.1^25,K.1^11,-1*K.1^29,-1*K.1^79,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,-1*K.1^24,K.1^72,-1*K.1^72,K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^60,-1*K.1^36,K.1^84,-1*K.1^12,-1*K.1^84,K.1^12,K.1^36,K.1^60,K.1^8,-1*K.1^40,K.1^88,-1*K.1^56,-1*K.1^8,-1*K.1^88,K.1^56,K.1^40,K.1^6,K.1^90,-1*K.1^78,K.1^18,-1*K.1^54,K.1^42,-1*K.1^30,K.1^66,-1*K.1^66,K.1^30,K.1^54,-1*K.1^42,-1*K.1^18,K.1^78,-1*K.1^90,-1*K.1^6,K.1^28,-1*K.1^76,K.1^4,K.1^20,K.1^52,-1*K.1^4,-1*K.1^28,K.1^44,-1*K.1^92,K.1^76,K.1^92,-1*K.1^20,-1*K.1^68,-1*K.1^44,-1*K.1^52,K.1^68,-1*K.1^69,K.1^93,-1*K.1^27,K.1^81,-1*K.1^39,K.1^27,-1*K.1^93,-1*K.1^81,K.1^39,-1*K.1^63,K.1^63,K.1^21,-1*K.1^21,-1*K.1^51,K.1^9,K.1^51,-1*K.1^9,-1*K.1^57,-1*K.1^87,-1*K.1^45,K.1^3,K.1^75,K.1^69,-1*K.1^15,K.1^33,K.1^87,K.1^57,K.1^45,-1*K.1^3,K.1^15,-1*K.1^33,-1*K.1^75,K.1^74,-1*K.1^10,-1*K.1^82,-1*K.1^38,-1*K.1^22,-1*K.1^62,K.1^14,-1*K.1^70,K.1^86,K.1^46,K.1^70,-1*K.1^14,K.1^22,K.1^82,K.1^58,-1*K.1^50,K.1^94,K.1^50,K.1^2,-1*K.1^74,-1*K.1^34,K.1^26,K.1^34,-1*K.1^46,-1*K.1^2,K.1^62,-1*K.1^94,K.1^38,-1*K.1^86,K.1^10,-1*K.1^26,-1*K.1^58,K.1,K.1^17,K.1^13,-1*K.1^65,-1*K.1^77,-1*K.1^25,K.1^5,K.1^49,K.1^41,K.1^79,K.1^83,K.1^23,K.1^59,K.1^91,-1*K.1^83,K.1^43,-1*K.1^89,-1*K.1^41,K.1^7,-1*K.1^59,-1*K.1^73,-1*K.1^35,K.1^11,-1*K.1^91,K.1^35,K.1^55,-1*K.1^55,K.1^19,-1*K.1^13,-1*K.1^7,K.1^77,-1*K.1^49,-1*K.1,K.1^29,K.1^61,-1*K.1^37,K.1^95,-1*K.1^61,-1*K.1^11,K.1^47,-1*K.1^85,K.1^65,K.1^53,-1*K.1^79,-1*K.1^71,-1*K.1^19,-1*K.1^31,K.1^31,K.1^89,K.1^25,-1*K.1^5,-1*K.1^23,-1*K.1^95,K.1^67,-1*K.1^53,-1*K.1^47,K.1^37,-1*K.1^43,-1*K.1^29,K.1^73,K.1^71,K.1^85,-1*K.1^67,-1*K.1^17,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,K.1^72,-1*K.1^24,K.1^24,-1*K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^36,K.1^60,-1*K.1^12,K.1^84,K.1^12,-1*K.1^84,-1*K.1^60,-1*K.1^36,-1*K.1^88,K.1^56,-1*K.1^8,K.1^40,K.1^88,K.1^8,-1*K.1^40,-1*K.1^56,-1*K.1^90,-1*K.1^6,K.1^18,-1*K.1^78,K.1^42,-1*K.1^54,K.1^66,-1*K.1^30,K.1^30,-1*K.1^66,-1*K.1^42,K.1^54,K.1^78,-1*K.1^18,K.1^6,K.1^90,-1*K.1^68,K.1^20,-1*K.1^92,-1*K.1^76,-1*K.1^44,K.1^92,K.1^68,-1*K.1^52,K.1^4,-1*K.1^20,-1*K.1^4,K.1^76,K.1^28,K.1^52,K.1^44,-1*K.1^28,K.1^27,-1*K.1^3,K.1^69,-1*K.1^15,K.1^57,-1*K.1^69,K.1^3,K.1^15,-1*K.1^57,K.1^33,-1*K.1^33,-1*K.1^75,K.1^75,K.1^45,-1*K.1^87,-1*K.1^45,K.1^87,K.1^39,K.1^9,K.1^51,-1*K.1^93,-1*K.1^21,-1*K.1^27,K.1^81,-1*K.1^63,-1*K.1^9,-1*K.1^39,-1*K.1^51,K.1^93,-1*K.1^81,K.1^63,K.1^21,-1*K.1^22,K.1^86,K.1^14,K.1^58,K.1^74,K.1^34,-1*K.1^82,K.1^26,-1*K.1^10,-1*K.1^50,-1*K.1^26,K.1^82,-1*K.1^74,-1*K.1^14,-1*K.1^38,K.1^46,-1*K.1^2,-1*K.1^46,-1*K.1^94,K.1^22,K.1^62,-1*K.1^70,-1*K.1^62,K.1^50,K.1^94,-1*K.1^34,K.1^2,-1*K.1^58,K.1^10,-1*K.1^86,K.1^70,K.1^38,-1*K.1^95,-1*K.1^79,-1*K.1^83,K.1^31,K.1^19,K.1^71,-1*K.1^91,-1*K.1^47,-1*K.1^55,-1*K.1^17,-1*K.1^13,-1*K.1^73,-1*K.1^37,-1*K.1^5,K.1^13,-1*K.1^53,K.1^7,K.1^55,-1*K.1^89,K.1^37,K.1^23,K.1^61,-1*K.1^85,K.1^5,-1*K.1^61,-1*K.1^41,K.1^41,-1*K.1^77,K.1^83,K.1^89,-1*K.1^19,K.1^47,K.1^95,-1*K.1^67,-1*K.1^35,K.1^59,-1*K.1,K.1^35,K.1^85,-1*K.1^49,K.1^11,-1*K.1^31,-1*K.1^43,K.1^17,K.1^25,K.1^77,K.1^65,-1*K.1^65,-1*K.1^7,-1*K.1^71,K.1^91,K.1^73,K.1,-1*K.1^29,K.1^43,K.1^49,-1*K.1^59,K.1^53,K.1^67,-1*K.1^23,-1*K.1^25,-1*K.1^11,K.1^29,K.1^79,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^12,-1*K.1^84,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,K.1^84,K.1^12,-1*K.1^8,K.1^40,-1*K.1^88,K.1^56,K.1^8,K.1^88,-1*K.1^56,-1*K.1^40,K.1^78,K.1^18,-1*K.1^54,K.1^42,K.1^30,-1*K.1^66,-1*K.1^6,K.1^90,-1*K.1^90,K.1^6,-1*K.1^30,K.1^66,-1*K.1^42,K.1^54,-1*K.1^18,-1*K.1^78,-1*K.1^76,-1*K.1^28,K.1^52,K.1^68,-1*K.1^4,-1*K.1^52,K.1^76,-1*K.1^92,-1*K.1^44,K.1^28,K.1^44,-1*K.1^68,K.1^20,K.1^92,K.1^4,-1*K.1^20,-1*K.1^33,-1*K.1^57,-1*K.1^63,-1*K.1^93,-1*K.1^27,K.1^63,K.1^57,K.1^93,K.1^27,K.1^51,-1*K.1^51,-1*K.1^81,K.1^81,K.1^87,K.1^21,-1*K.1^87,-1*K.1^21,-1*K.1^69,-1*K.1^75,K.1^9,-1*K.1^39,-1*K.1^15,K.1^33,K.1^3,-1*K.1^45,K.1^75,K.1^69,-1*K.1^9,K.1^39,-1*K.1^3,K.1^45,K.1^15,K.1^2,K.1^34,K.1^10,K.1^14,-1*K.1^94,-1*K.1^38,-1*K.1^86,K.1^46,-1*K.1^62,K.1^22,-1*K.1^46,K.1^86,K.1^94,-1*K.1^10,-1*K.1^82,-1*K.1^74,K.1^70,K.1^74,K.1^26,-1*K.1^2,-1*K.1^58,-1*K.1^50,K.1^58,-1*K.1^22,-1*K.1^26,K.1^38,-1*K.1^70,-1*K.1^14,K.1^62,-1*K.1^34,K.1^50,K.1^82,-1*K.1^13,-1*K.1^29,K.1^73,K.1^77,K.1^41,-1*K.1^37,-1*K.1^65,-1*K.1^61,K.1^53,-1*K.1^67,K.1^23,K.1^11,K.1^95,-1*K.1^31,-1*K.1^23,K.1^79,K.1^5,-1*K.1^53,-1*K.1^91,-1*K.1^95,-1*K.1^85,K.1^71,K.1^47,K.1^31,-1*K.1^71,K.1^43,-1*K.1^43,-1*K.1^55,-1*K.1^73,K.1^91,-1*K.1^41,K.1^61,K.1^13,K.1^89,-1*K.1^25,-1*K.1,-1*K.1^83,K.1^25,-1*K.1^47,-1*K.1^35,-1*K.1^49,-1*K.1^77,K.1^17,K.1^67,-1*K.1^59,K.1^55,K.1^19,-1*K.1^19,-1*K.1^5,K.1^37,K.1^65,-1*K.1^11,K.1^83,K.1^7,-1*K.1^17,K.1^35,K.1,-1*K.1^79,-1*K.1^89,K.1^85,K.1^59,K.1^49,-1*K.1^7,K.1^29,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^84,K.1^12,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,-1*K.1^12,-1*K.1^84,K.1^88,-1*K.1^56,K.1^8,-1*K.1^40,-1*K.1^88,-1*K.1^8,K.1^40,K.1^56,-1*K.1^18,-1*K.1^78,K.1^42,-1*K.1^54,-1*K.1^66,K.1^30,K.1^90,-1*K.1^6,K.1^6,-1*K.1^90,K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,K.1^78,K.1^18,K.1^20,K.1^68,-1*K.1^44,-1*K.1^28,K.1^92,K.1^44,-1*K.1^20,K.1^4,K.1^52,-1*K.1^68,-1*K.1^52,K.1^28,-1*K.1^76,-1*K.1^4,-1*K.1^92,K.1^76,K.1^63,K.1^39,K.1^33,K.1^3,K.1^69,-1*K.1^33,-1*K.1^39,-1*K.1^3,-1*K.1^69,-1*K.1^45,K.1^45,K.1^15,-1*K.1^15,-1*K.1^9,-1*K.1^75,K.1^9,K.1^75,K.1^27,K.1^21,-1*K.1^87,K.1^57,K.1^81,-1*K.1^63,-1*K.1^93,K.1^51,-1*K.1^21,-1*K.1^27,K.1^87,-1*K.1^57,K.1^93,-1*K.1^51,-1*K.1^81,-1*K.1^94,-1*K.1^62,-1*K.1^86,-1*K.1^82,K.1^2,K.1^58,K.1^10,-1*K.1^50,K.1^34,-1*K.1^74,K.1^50,-1*K.1^10,-1*K.1^2,K.1^86,K.1^14,K.1^22,-1*K.1^26,-1*K.1^22,-1*K.1^70,K.1^94,K.1^38,K.1^46,-1*K.1^38,K.1^74,K.1^70,-1*K.1^58,K.1^26,K.1^82,-1*K.1^34,K.1^62,-1*K.1^46,-1*K.1^14,K.1^83,K.1^67,-1*K.1^23,-1*K.1^19,-1*K.1^55,K.1^59,K.1^31,K.1^35,-1*K.1^43,K.1^29,-1*K.1^73,-1*K.1^85,-1*K.1,K.1^65,K.1^73,-1*K.1^17,-1*K.1^91,K.1^43,K.1^5,K.1,K.1^11,-1*K.1^25,-1*K.1^49,-1*K.1^65,K.1^25,-1*K.1^53,K.1^53,K.1^41,K.1^23,-1*K.1^5,K.1^55,-1*K.1^35,-1*K.1^83,-1*K.1^7,K.1^71,K.1^95,K.1^13,-1*K.1^71,K.1^49,K.1^61,K.1^47,K.1^19,-1*K.1^79,-1*K.1^29,K.1^37,-1*K.1^41,-1*K.1^77,K.1^77,K.1^91,-1*K.1^59,-1*K.1^31,K.1^85,-1*K.1^13,-1*K.1^89,K.1^79,-1*K.1^61,-1*K.1^95,K.1^17,K.1^7,-1*K.1^11,-1*K.1^37,-1*K.1^47,K.1^89,-1*K.1^67,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^12,-1*K.1^84,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,K.1^84,K.1^12,-1*K.1^8,K.1^40,-1*K.1^88,K.1^56,K.1^8,K.1^88,-1*K.1^56,-1*K.1^40,K.1^78,K.1^18,-1*K.1^54,K.1^42,K.1^30,-1*K.1^66,-1*K.1^6,K.1^90,-1*K.1^90,K.1^6,-1*K.1^30,K.1^66,-1*K.1^42,K.1^54,-1*K.1^18,-1*K.1^78,-1*K.1^76,-1*K.1^28,K.1^52,K.1^68,-1*K.1^4,-1*K.1^52,K.1^76,-1*K.1^92,-1*K.1^44,K.1^28,K.1^44,-1*K.1^68,K.1^20,K.1^92,K.1^4,-1*K.1^20,K.1^33,K.1^57,K.1^63,K.1^93,K.1^27,-1*K.1^63,-1*K.1^57,-1*K.1^93,-1*K.1^27,-1*K.1^51,K.1^51,K.1^81,-1*K.1^81,-1*K.1^87,-1*K.1^21,K.1^87,K.1^21,K.1^69,K.1^75,-1*K.1^9,K.1^39,K.1^15,-1*K.1^33,-1*K.1^3,K.1^45,-1*K.1^75,-1*K.1^69,K.1^9,-1*K.1^39,K.1^3,-1*K.1^45,-1*K.1^15,K.1^2,K.1^34,K.1^10,K.1^14,-1*K.1^94,-1*K.1^38,-1*K.1^86,K.1^46,-1*K.1^62,K.1^22,-1*K.1^46,K.1^86,K.1^94,-1*K.1^10,-1*K.1^82,-1*K.1^74,K.1^70,K.1^74,K.1^26,-1*K.1^2,-1*K.1^58,-1*K.1^50,K.1^58,-1*K.1^22,-1*K.1^26,K.1^38,-1*K.1^70,-1*K.1^14,K.1^62,-1*K.1^34,K.1^50,K.1^82,K.1^13,K.1^29,-1*K.1^73,-1*K.1^77,-1*K.1^41,K.1^37,K.1^65,K.1^61,-1*K.1^53,K.1^67,-1*K.1^23,-1*K.1^11,-1*K.1^95,K.1^31,K.1^23,-1*K.1^79,-1*K.1^5,K.1^53,K.1^91,K.1^95,K.1^85,-1*K.1^71,-1*K.1^47,-1*K.1^31,K.1^71,-1*K.1^43,K.1^43,K.1^55,K.1^73,-1*K.1^91,K.1^41,-1*K.1^61,-1*K.1^13,-1*K.1^89,K.1^25,K.1,K.1^83,-1*K.1^25,K.1^47,K.1^35,K.1^49,K.1^77,-1*K.1^17,-1*K.1^67,K.1^59,-1*K.1^55,-1*K.1^19,K.1^19,K.1^5,-1*K.1^37,-1*K.1^65,K.1^11,-1*K.1^83,-1*K.1^7,K.1^17,-1*K.1^35,-1*K.1,K.1^79,K.1^89,-1*K.1^85,-1*K.1^59,-1*K.1^49,K.1^7,-1*K.1^29,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^84,K.1^12,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,-1*K.1^12,-1*K.1^84,K.1^88,-1*K.1^56,K.1^8,-1*K.1^40,-1*K.1^88,-1*K.1^8,K.1^40,K.1^56,-1*K.1^18,-1*K.1^78,K.1^42,-1*K.1^54,-1*K.1^66,K.1^30,K.1^90,-1*K.1^6,K.1^6,-1*K.1^90,K.1^66,-1*K.1^30,K.1^54,-1*K.1^42,K.1^78,K.1^18,K.1^20,K.1^68,-1*K.1^44,-1*K.1^28,K.1^92,K.1^44,-1*K.1^20,K.1^4,K.1^52,-1*K.1^68,-1*K.1^52,K.1^28,-1*K.1^76,-1*K.1^4,-1*K.1^92,K.1^76,-1*K.1^63,-1*K.1^39,-1*K.1^33,-1*K.1^3,-1*K.1^69,K.1^33,K.1^39,K.1^3,K.1^69,K.1^45,-1*K.1^45,-1*K.1^15,K.1^15,K.1^9,K.1^75,-1*K.1^9,-1*K.1^75,-1*K.1^27,-1*K.1^21,K.1^87,-1*K.1^57,-1*K.1^81,K.1^63,K.1^93,-1*K.1^51,K.1^21,K.1^27,-1*K.1^87,K.1^57,-1*K.1^93,K.1^51,K.1^81,-1*K.1^94,-1*K.1^62,-1*K.1^86,-1*K.1^82,K.1^2,K.1^58,K.1^10,-1*K.1^50,K.1^34,-1*K.1^74,K.1^50,-1*K.1^10,-1*K.1^2,K.1^86,K.1^14,K.1^22,-1*K.1^26,-1*K.1^22,-1*K.1^70,K.1^94,K.1^38,K.1^46,-1*K.1^38,K.1^74,K.1^70,-1*K.1^58,K.1^26,K.1^82,-1*K.1^34,K.1^62,-1*K.1^46,-1*K.1^14,-1*K.1^83,-1*K.1^67,K.1^23,K.1^19,K.1^55,-1*K.1^59,-1*K.1^31,-1*K.1^35,K.1^43,-1*K.1^29,K.1^73,K.1^85,K.1,-1*K.1^65,-1*K.1^73,K.1^17,K.1^91,-1*K.1^43,-1*K.1^5,-1*K.1,-1*K.1^11,K.1^25,K.1^49,K.1^65,-1*K.1^25,K.1^53,-1*K.1^53,-1*K.1^41,-1*K.1^23,K.1^5,-1*K.1^55,K.1^35,K.1^83,K.1^7,-1*K.1^71,-1*K.1^95,-1*K.1^13,K.1^71,-1*K.1^49,-1*K.1^61,-1*K.1^47,-1*K.1^19,K.1^79,K.1^29,-1*K.1^37,K.1^41,K.1^77,-1*K.1^77,-1*K.1^91,K.1^59,K.1^31,-1*K.1^85,K.1^13,K.1^89,-1*K.1^79,K.1^61,K.1^95,-1*K.1^17,-1*K.1^7,K.1^11,K.1^37,K.1^47,-1*K.1^89,K.1^67,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^12,-1*K.1^84,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,K.1^84,K.1^12,-1*K.1^8,K.1^40,-1*K.1^88,K.1^56,K.1^8,K.1^88,-1*K.1^56,-1*K.1^40,-1*K.1^78,-1*K.1^18,K.1^54,-1*K.1^42,-1*K.1^30,K.1^66,K.1^6,-1*K.1^90,K.1^90,-1*K.1^6,K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,K.1^18,K.1^78,-1*K.1^76,-1*K.1^28,K.1^52,K.1^68,-1*K.1^4,-1*K.1^52,K.1^76,-1*K.1^92,-1*K.1^44,K.1^28,K.1^44,-1*K.1^68,K.1^20,K.1^92,K.1^4,-1*K.1^20,K.1^81,-1*K.1^9,K.1^15,-1*K.1^45,-1*K.1^75,-1*K.1^15,K.1^9,K.1^45,K.1^75,-1*K.1^3,K.1^3,-1*K.1^33,K.1^33,-1*K.1^39,-1*K.1^69,K.1^39,K.1^69,-1*K.1^21,K.1^27,-1*K.1^57,-1*K.1^87,-1*K.1^63,-1*K.1^81,K.1^51,K.1^93,-1*K.1^27,K.1^21,K.1^57,K.1^87,-1*K.1^51,-1*K.1^93,K.1^63,-1*K.1^2,-1*K.1^34,-1*K.1^10,-1*K.1^14,K.1^94,K.1^38,K.1^86,-1*K.1^46,K.1^62,-1*K.1^22,K.1^46,-1*K.1^86,-1*K.1^94,K.1^10,K.1^82,K.1^74,-1*K.1^70,-1*K.1^74,-1*K.1^26,K.1^2,K.1^58,K.1^50,-1*K.1^58,K.1^22,K.1^26,-1*K.1^38,K.1^70,K.1^14,-1*K.1^62,K.1^34,-1*K.1^50,-1*K.1^82,K.1^61,K.1^77,K.1^25,K.1^29,-1*K.1^89,K.1^85,-1*K.1^17,-1*K.1^13,K.1^5,K.1^19,K.1^71,K.1^59,-1*K.1^47,-1*K.1^79,-1*K.1^71,-1*K.1^31,-1*K.1^53,-1*K.1^5,K.1^43,K.1^47,-1*K.1^37,-1*K.1^23,K.1^95,K.1^79,K.1^23,K.1^91,-1*K.1^91,K.1^7,-1*K.1^25,-1*K.1^43,K.1^89,K.1^13,-1*K.1^61,K.1^41,K.1^73,K.1^49,K.1^35,-1*K.1^73,-1*K.1^95,-1*K.1^83,-1*K.1,-1*K.1^29,-1*K.1^65,-1*K.1^19,K.1^11,-1*K.1^7,K.1^67,-1*K.1^67,K.1^53,-1*K.1^85,K.1^17,-1*K.1^59,-1*K.1^35,K.1^55,K.1^65,K.1^83,-1*K.1^49,K.1^31,-1*K.1^41,K.1^37,-1*K.1^11,K.1,-1*K.1^55,-1*K.1^77,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^84,K.1^12,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,-1*K.1^12,-1*K.1^84,K.1^88,-1*K.1^56,K.1^8,-1*K.1^40,-1*K.1^88,-1*K.1^8,K.1^40,K.1^56,K.1^18,K.1^78,-1*K.1^42,K.1^54,K.1^66,-1*K.1^30,-1*K.1^90,K.1^6,-1*K.1^6,K.1^90,-1*K.1^66,K.1^30,-1*K.1^54,K.1^42,-1*K.1^78,-1*K.1^18,K.1^20,K.1^68,-1*K.1^44,-1*K.1^28,K.1^92,K.1^44,-1*K.1^20,K.1^4,K.1^52,-1*K.1^68,-1*K.1^52,K.1^28,-1*K.1^76,-1*K.1^4,-1*K.1^92,K.1^76,-1*K.1^15,K.1^87,-1*K.1^81,K.1^51,K.1^21,K.1^81,-1*K.1^87,-1*K.1^51,-1*K.1^21,K.1^93,-1*K.1^93,K.1^63,-1*K.1^63,K.1^57,K.1^27,-1*K.1^57,-1*K.1^27,K.1^75,-1*K.1^69,K.1^39,K.1^9,K.1^33,K.1^15,-1*K.1^45,-1*K.1^3,K.1^69,-1*K.1^75,-1*K.1^39,-1*K.1^9,K.1^45,K.1^3,-1*K.1^33,K.1^94,K.1^62,K.1^86,K.1^82,-1*K.1^2,-1*K.1^58,-1*K.1^10,K.1^50,-1*K.1^34,K.1^74,-1*K.1^50,K.1^10,K.1^2,-1*K.1^86,-1*K.1^14,-1*K.1^22,K.1^26,K.1^22,K.1^70,-1*K.1^94,-1*K.1^38,-1*K.1^46,K.1^38,-1*K.1^74,-1*K.1^70,K.1^58,-1*K.1^26,-1*K.1^82,K.1^34,-1*K.1^62,K.1^46,K.1^14,-1*K.1^35,-1*K.1^19,-1*K.1^71,-1*K.1^67,K.1^7,-1*K.1^11,K.1^79,K.1^83,-1*K.1^91,-1*K.1^77,-1*K.1^25,-1*K.1^37,K.1^49,K.1^17,K.1^25,K.1^65,K.1^43,K.1^91,-1*K.1^53,-1*K.1^49,K.1^59,K.1^73,-1*K.1,-1*K.1^17,-1*K.1^73,-1*K.1^5,K.1^5,-1*K.1^89,K.1^71,K.1^53,-1*K.1^7,-1*K.1^83,K.1^35,-1*K.1^55,-1*K.1^23,-1*K.1^47,-1*K.1^61,K.1^23,K.1,K.1^13,K.1^95,K.1^67,K.1^31,K.1^77,-1*K.1^85,K.1^89,-1*K.1^29,K.1^29,-1*K.1^43,K.1^11,-1*K.1^79,K.1^37,K.1^61,-1*K.1^41,-1*K.1^31,-1*K.1^13,K.1^47,-1*K.1^65,K.1^55,-1*K.1^59,K.1^85,-1*K.1^95,K.1^41,K.1^19,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,-1*K.1^12,-1*K.1^84,-1*K.1^36,K.1^60,K.1^36,-1*K.1^60,K.1^84,K.1^12,-1*K.1^8,K.1^40,-1*K.1^88,K.1^56,K.1^8,K.1^88,-1*K.1^56,-1*K.1^40,-1*K.1^78,-1*K.1^18,K.1^54,-1*K.1^42,-1*K.1^30,K.1^66,K.1^6,-1*K.1^90,K.1^90,-1*K.1^6,K.1^30,-1*K.1^66,K.1^42,-1*K.1^54,K.1^18,K.1^78,-1*K.1^76,-1*K.1^28,K.1^52,K.1^68,-1*K.1^4,-1*K.1^52,K.1^76,-1*K.1^92,-1*K.1^44,K.1^28,K.1^44,-1*K.1^68,K.1^20,K.1^92,K.1^4,-1*K.1^20,-1*K.1^81,K.1^9,-1*K.1^15,K.1^45,K.1^75,K.1^15,-1*K.1^9,-1*K.1^45,-1*K.1^75,K.1^3,-1*K.1^3,K.1^33,-1*K.1^33,K.1^39,K.1^69,-1*K.1^39,-1*K.1^69,K.1^21,-1*K.1^27,K.1^57,K.1^87,K.1^63,K.1^81,-1*K.1^51,-1*K.1^93,K.1^27,-1*K.1^21,-1*K.1^57,-1*K.1^87,K.1^51,K.1^93,-1*K.1^63,-1*K.1^2,-1*K.1^34,-1*K.1^10,-1*K.1^14,K.1^94,K.1^38,K.1^86,-1*K.1^46,K.1^62,-1*K.1^22,K.1^46,-1*K.1^86,-1*K.1^94,K.1^10,K.1^82,K.1^74,-1*K.1^70,-1*K.1^74,-1*K.1^26,K.1^2,K.1^58,K.1^50,-1*K.1^58,K.1^22,K.1^26,-1*K.1^38,K.1^70,K.1^14,-1*K.1^62,K.1^34,-1*K.1^50,-1*K.1^82,-1*K.1^61,-1*K.1^77,-1*K.1^25,-1*K.1^29,K.1^89,-1*K.1^85,K.1^17,K.1^13,-1*K.1^5,-1*K.1^19,-1*K.1^71,-1*K.1^59,K.1^47,K.1^79,K.1^71,K.1^31,K.1^53,K.1^5,-1*K.1^43,-1*K.1^47,K.1^37,K.1^23,-1*K.1^95,-1*K.1^79,-1*K.1^23,-1*K.1^91,K.1^91,-1*K.1^7,K.1^25,K.1^43,-1*K.1^89,-1*K.1^13,K.1^61,-1*K.1^41,-1*K.1^73,-1*K.1^49,-1*K.1^35,K.1^73,K.1^95,K.1^83,K.1,K.1^29,K.1^65,K.1^19,-1*K.1^11,K.1^7,-1*K.1^67,K.1^67,-1*K.1^53,K.1^85,-1*K.1^17,K.1^59,K.1^35,-1*K.1^55,-1*K.1^65,-1*K.1^83,K.1^49,-1*K.1^31,K.1^41,-1*K.1^37,K.1^11,-1*K.1,K.1^55,K.1^77,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,K.1^84,K.1^12,K.1^60,-1*K.1^36,-1*K.1^60,K.1^36,-1*K.1^12,-1*K.1^84,K.1^88,-1*K.1^56,K.1^8,-1*K.1^40,-1*K.1^88,-1*K.1^8,K.1^40,K.1^56,K.1^18,K.1^78,-1*K.1^42,K.1^54,K.1^66,-1*K.1^30,-1*K.1^90,K.1^6,-1*K.1^6,K.1^90,-1*K.1^66,K.1^30,-1*K.1^54,K.1^42,-1*K.1^78,-1*K.1^18,K.1^20,K.1^68,-1*K.1^44,-1*K.1^28,K.1^92,K.1^44,-1*K.1^20,K.1^4,K.1^52,-1*K.1^68,-1*K.1^52,K.1^28,-1*K.1^76,-1*K.1^4,-1*K.1^92,K.1^76,K.1^15,-1*K.1^87,K.1^81,-1*K.1^51,-1*K.1^21,-1*K.1^81,K.1^87,K.1^51,K.1^21,-1*K.1^93,K.1^93,-1*K.1^63,K.1^63,-1*K.1^57,-1*K.1^27,K.1^57,K.1^27,-1*K.1^75,K.1^69,-1*K.1^39,-1*K.1^9,-1*K.1^33,-1*K.1^15,K.1^45,K.1^3,-1*K.1^69,K.1^75,K.1^39,K.1^9,-1*K.1^45,-1*K.1^3,K.1^33,K.1^94,K.1^62,K.1^86,K.1^82,-1*K.1^2,-1*K.1^58,-1*K.1^10,K.1^50,-1*K.1^34,K.1^74,-1*K.1^50,K.1^10,K.1^2,-1*K.1^86,-1*K.1^14,-1*K.1^22,K.1^26,K.1^22,K.1^70,-1*K.1^94,-1*K.1^38,-1*K.1^46,K.1^38,-1*K.1^74,-1*K.1^70,K.1^58,-1*K.1^26,-1*K.1^82,K.1^34,-1*K.1^62,K.1^46,K.1^14,K.1^35,K.1^19,K.1^71,K.1^67,-1*K.1^7,K.1^11,-1*K.1^79,-1*K.1^83,K.1^91,K.1^77,K.1^25,K.1^37,-1*K.1^49,-1*K.1^17,-1*K.1^25,-1*K.1^65,-1*K.1^43,-1*K.1^91,K.1^53,K.1^49,-1*K.1^59,-1*K.1^73,K.1,K.1^17,K.1^73,K.1^5,-1*K.1^5,K.1^89,-1*K.1^71,-1*K.1^53,K.1^7,K.1^83,-1*K.1^35,K.1^55,K.1^23,K.1^47,K.1^61,-1*K.1^23,-1*K.1,-1*K.1^13,-1*K.1^95,-1*K.1^67,-1*K.1^31,-1*K.1^77,K.1^85,-1*K.1^89,K.1^29,-1*K.1^29,K.1^43,-1*K.1^11,K.1^79,-1*K.1^37,-1*K.1^61,K.1^41,K.1^31,K.1^13,-1*K.1^47,K.1^65,-1*K.1^55,K.1^59,-1*K.1^85,K.1^95,-1*K.1^41,-1*K.1^19,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^12,K.1^84,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,-1*K.1^84,-1*K.1^12,-1*K.1^8,K.1^40,-1*K.1^88,K.1^56,K.1^8,K.1^88,-1*K.1^56,-1*K.1^40,-1*K.1^30,-1*K.1^66,K.1^6,-1*K.1^90,K.1^78,-1*K.1^18,-1*K.1^54,K.1^42,-1*K.1^42,K.1^54,-1*K.1^78,K.1^18,K.1^90,-1*K.1^6,K.1^66,K.1^30,K.1^76,K.1^28,-1*K.1^52,-1*K.1^68,K.1^4,K.1^52,-1*K.1^76,K.1^92,K.1^44,-1*K.1^28,-1*K.1^44,K.1^68,-1*K.1^20,-1*K.1^92,-1*K.1^4,K.1^20,-1*K.1^9,-1*K.1^33,-1*K.1^87,K.1^69,K.1^51,K.1^87,K.1^33,-1*K.1^69,-1*K.1^51,-1*K.1^75,K.1^75,-1*K.1^57,K.1^57,-1*K.1^15,K.1^93,K.1^15,-1*K.1^93,K.1^45,-1*K.1^3,-1*K.1^81,-1*K.1^63,-1*K.1^39,K.1^9,-1*K.1^27,K.1^21,K.1^3,-1*K.1^45,K.1^81,K.1^63,K.1^27,-1*K.1^21,K.1^39,-1*K.1^50,-1*K.1^82,-1*K.1^58,K.1^62,K.1^46,-1*K.1^86,K.1^38,K.1^94,K.1^14,K.1^70,-1*K.1^94,-1*K.1^38,-1*K.1^46,K.1^58,-1*K.1^34,-1*K.1^26,-1*K.1^22,K.1^26,-1*K.1^74,K.1^50,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^70,K.1^74,K.1^86,K.1^22,-1*K.1^62,-1*K.1^14,K.1^82,K.1^2,K.1^34,-1*K.1^85,K.1^5,K.1^49,-1*K.1^53,K.1^17,K.1^13,-1*K.1^41,K.1^37,-1*K.1^29,K.1^91,K.1^47,-1*K.1^35,-1*K.1^23,-1*K.1^55,-1*K.1^47,-1*K.1^7,K.1^77,K.1^29,-1*K.1^19,K.1^23,K.1^61,K.1^95,K.1^71,K.1^55,-1*K.1^95,-1*K.1^67,K.1^67,-1*K.1^79,-1*K.1^49,K.1^19,-1*K.1^17,-1*K.1^37,K.1^85,K.1^65,-1*K.1,K.1^73,-1*K.1^11,K.1,-1*K.1^71,K.1^59,-1*K.1^25,K.1^53,-1*K.1^89,-1*K.1^91,K.1^83,K.1^79,-1*K.1^43,K.1^43,-1*K.1^77,-1*K.1^13,K.1^41,K.1^35,K.1^11,K.1^31,K.1^89,-1*K.1^59,-1*K.1^73,K.1^7,-1*K.1^65,-1*K.1^61,-1*K.1^83,K.1^25,-1*K.1^31,-1*K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^84,-1*K.1^12,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,K.1^12,K.1^84,K.1^88,-1*K.1^56,K.1^8,-1*K.1^40,-1*K.1^88,-1*K.1^8,K.1^40,K.1^56,K.1^66,K.1^30,-1*K.1^90,K.1^6,-1*K.1^18,K.1^78,K.1^42,-1*K.1^54,K.1^54,-1*K.1^42,K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,-1*K.1^30,-1*K.1^66,-1*K.1^20,-1*K.1^68,K.1^44,K.1^28,-1*K.1^92,-1*K.1^44,K.1^20,-1*K.1^4,-1*K.1^52,K.1^68,K.1^52,-1*K.1^28,K.1^76,K.1^4,K.1^92,-1*K.1^76,K.1^87,K.1^63,K.1^9,-1*K.1^27,-1*K.1^45,-1*K.1^9,-1*K.1^63,K.1^27,K.1^45,K.1^21,-1*K.1^21,K.1^39,-1*K.1^39,K.1^81,-1*K.1^3,-1*K.1^81,K.1^3,-1*K.1^51,K.1^93,K.1^15,K.1^33,K.1^57,-1*K.1^87,K.1^69,-1*K.1^75,-1*K.1^93,K.1^51,-1*K.1^15,-1*K.1^33,-1*K.1^69,K.1^75,-1*K.1^57,K.1^46,K.1^14,K.1^38,-1*K.1^34,-1*K.1^50,K.1^10,-1*K.1^58,-1*K.1^2,-1*K.1^82,-1*K.1^26,K.1^2,K.1^58,K.1^50,-1*K.1^38,K.1^62,K.1^70,K.1^74,-1*K.1^70,K.1^22,-1*K.1^46,K.1^86,K.1^94,-1*K.1^86,K.1^26,-1*K.1^22,-1*K.1^10,-1*K.1^74,K.1^34,K.1^82,-1*K.1^14,-1*K.1^94,-1*K.1^62,K.1^11,-1*K.1^91,-1*K.1^47,K.1^43,-1*K.1^79,-1*K.1^83,K.1^55,-1*K.1^59,K.1^67,-1*K.1^5,-1*K.1^49,K.1^61,K.1^73,K.1^41,K.1^49,K.1^89,-1*K.1^19,-1*K.1^67,K.1^77,-1*K.1^73,-1*K.1^35,-1*K.1,-1*K.1^25,-1*K.1^41,K.1,K.1^29,-1*K.1^29,K.1^17,K.1^47,-1*K.1^77,K.1^79,K.1^59,-1*K.1^11,-1*K.1^31,K.1^95,-1*K.1^23,K.1^85,-1*K.1^95,K.1^25,-1*K.1^37,K.1^71,-1*K.1^43,K.1^7,K.1^5,-1*K.1^13,-1*K.1^17,K.1^53,-1*K.1^53,K.1^19,K.1^83,-1*K.1^55,-1*K.1^61,-1*K.1^85,-1*K.1^65,-1*K.1^7,K.1^37,K.1^23,-1*K.1^89,K.1^31,K.1^35,K.1^13,-1*K.1^71,K.1^65,K.1^91,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^12,K.1^84,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,-1*K.1^84,-1*K.1^12,-1*K.1^8,K.1^40,-1*K.1^88,K.1^56,K.1^8,K.1^88,-1*K.1^56,-1*K.1^40,-1*K.1^30,-1*K.1^66,K.1^6,-1*K.1^90,K.1^78,-1*K.1^18,-1*K.1^54,K.1^42,-1*K.1^42,K.1^54,-1*K.1^78,K.1^18,K.1^90,-1*K.1^6,K.1^66,K.1^30,K.1^76,K.1^28,-1*K.1^52,-1*K.1^68,K.1^4,K.1^52,-1*K.1^76,K.1^92,K.1^44,-1*K.1^28,-1*K.1^44,K.1^68,-1*K.1^20,-1*K.1^92,-1*K.1^4,K.1^20,K.1^9,K.1^33,K.1^87,-1*K.1^69,-1*K.1^51,-1*K.1^87,-1*K.1^33,K.1^69,K.1^51,K.1^75,-1*K.1^75,K.1^57,-1*K.1^57,K.1^15,-1*K.1^93,-1*K.1^15,K.1^93,-1*K.1^45,K.1^3,K.1^81,K.1^63,K.1^39,-1*K.1^9,K.1^27,-1*K.1^21,-1*K.1^3,K.1^45,-1*K.1^81,-1*K.1^63,-1*K.1^27,K.1^21,-1*K.1^39,-1*K.1^50,-1*K.1^82,-1*K.1^58,K.1^62,K.1^46,-1*K.1^86,K.1^38,K.1^94,K.1^14,K.1^70,-1*K.1^94,-1*K.1^38,-1*K.1^46,K.1^58,-1*K.1^34,-1*K.1^26,-1*K.1^22,K.1^26,-1*K.1^74,K.1^50,-1*K.1^10,-1*K.1^2,K.1^10,-1*K.1^70,K.1^74,K.1^86,K.1^22,-1*K.1^62,-1*K.1^14,K.1^82,K.1^2,K.1^34,K.1^85,-1*K.1^5,-1*K.1^49,K.1^53,-1*K.1^17,-1*K.1^13,K.1^41,-1*K.1^37,K.1^29,-1*K.1^91,-1*K.1^47,K.1^35,K.1^23,K.1^55,K.1^47,K.1^7,-1*K.1^77,-1*K.1^29,K.1^19,-1*K.1^23,-1*K.1^61,-1*K.1^95,-1*K.1^71,-1*K.1^55,K.1^95,K.1^67,-1*K.1^67,K.1^79,K.1^49,-1*K.1^19,K.1^17,K.1^37,-1*K.1^85,-1*K.1^65,K.1,-1*K.1^73,K.1^11,-1*K.1,K.1^71,-1*K.1^59,K.1^25,-1*K.1^53,K.1^89,K.1^91,-1*K.1^83,-1*K.1^79,K.1^43,-1*K.1^43,K.1^77,K.1^13,-1*K.1^41,-1*K.1^35,-1*K.1^11,-1*K.1^31,-1*K.1^89,K.1^59,K.1^73,-1*K.1^7,K.1^65,K.1^61,K.1^83,-1*K.1^25,K.1^31,K.1^5,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^84,-1*K.1^12,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,K.1^12,K.1^84,K.1^88,-1*K.1^56,K.1^8,-1*K.1^40,-1*K.1^88,-1*K.1^8,K.1^40,K.1^56,K.1^66,K.1^30,-1*K.1^90,K.1^6,-1*K.1^18,K.1^78,K.1^42,-1*K.1^54,K.1^54,-1*K.1^42,K.1^18,-1*K.1^78,-1*K.1^6,K.1^90,-1*K.1^30,-1*K.1^66,-1*K.1^20,-1*K.1^68,K.1^44,K.1^28,-1*K.1^92,-1*K.1^44,K.1^20,-1*K.1^4,-1*K.1^52,K.1^68,K.1^52,-1*K.1^28,K.1^76,K.1^4,K.1^92,-1*K.1^76,-1*K.1^87,-1*K.1^63,-1*K.1^9,K.1^27,K.1^45,K.1^9,K.1^63,-1*K.1^27,-1*K.1^45,-1*K.1^21,K.1^21,-1*K.1^39,K.1^39,-1*K.1^81,K.1^3,K.1^81,-1*K.1^3,K.1^51,-1*K.1^93,-1*K.1^15,-1*K.1^33,-1*K.1^57,K.1^87,-1*K.1^69,K.1^75,K.1^93,-1*K.1^51,K.1^15,K.1^33,K.1^69,-1*K.1^75,K.1^57,K.1^46,K.1^14,K.1^38,-1*K.1^34,-1*K.1^50,K.1^10,-1*K.1^58,-1*K.1^2,-1*K.1^82,-1*K.1^26,K.1^2,K.1^58,K.1^50,-1*K.1^38,K.1^62,K.1^70,K.1^74,-1*K.1^70,K.1^22,-1*K.1^46,K.1^86,K.1^94,-1*K.1^86,K.1^26,-1*K.1^22,-1*K.1^10,-1*K.1^74,K.1^34,K.1^82,-1*K.1^14,-1*K.1^94,-1*K.1^62,-1*K.1^11,K.1^91,K.1^47,-1*K.1^43,K.1^79,K.1^83,-1*K.1^55,K.1^59,-1*K.1^67,K.1^5,K.1^49,-1*K.1^61,-1*K.1^73,-1*K.1^41,-1*K.1^49,-1*K.1^89,K.1^19,K.1^67,-1*K.1^77,K.1^73,K.1^35,K.1,K.1^25,K.1^41,-1*K.1,-1*K.1^29,K.1^29,-1*K.1^17,-1*K.1^47,K.1^77,-1*K.1^79,-1*K.1^59,K.1^11,K.1^31,-1*K.1^95,K.1^23,-1*K.1^85,K.1^95,-1*K.1^25,K.1^37,-1*K.1^71,K.1^43,-1*K.1^7,-1*K.1^5,K.1^13,K.1^17,-1*K.1^53,K.1^53,-1*K.1^19,-1*K.1^83,K.1^55,K.1^61,K.1^85,K.1^65,K.1^7,-1*K.1^37,-1*K.1^23,K.1^89,-1*K.1^31,-1*K.1^35,-1*K.1^13,K.1^71,-1*K.1^65,-1*K.1^91,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^12,K.1^84,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,-1*K.1^84,-1*K.1^12,-1*K.1^8,K.1^40,-1*K.1^88,K.1^56,K.1^8,K.1^88,-1*K.1^56,-1*K.1^40,K.1^30,K.1^66,-1*K.1^6,K.1^90,-1*K.1^78,K.1^18,K.1^54,-1*K.1^42,K.1^42,-1*K.1^54,K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,-1*K.1^66,-1*K.1^30,K.1^76,K.1^28,-1*K.1^52,-1*K.1^68,K.1^4,K.1^52,-1*K.1^76,K.1^92,K.1^44,-1*K.1^28,-1*K.1^44,K.1^68,-1*K.1^20,-1*K.1^92,-1*K.1^4,K.1^20,K.1^57,K.1^81,K.1^39,K.1^21,-1*K.1^3,-1*K.1^39,-1*K.1^81,-1*K.1^21,K.1^3,K.1^27,-1*K.1^27,-1*K.1^9,K.1^9,-1*K.1^63,K.1^45,K.1^63,-1*K.1^45,-1*K.1^93,-1*K.1^51,-1*K.1^33,K.1^15,-1*K.1^87,-1*K.1^57,-1*K.1^75,-1*K.1^69,K.1^51,K.1^93,K.1^33,-1*K.1^15,K.1^75,K.1^69,K.1^87,K.1^50,K.1^82,K.1^58,-1*K.1^62,-1*K.1^46,K.1^86,-1*K.1^38,-1*K.1^94,-1*K.1^14,-1*K.1^70,K.1^94,K.1^38,K.1^46,-1*K.1^58,K.1^34,K.1^26,K.1^22,-1*K.1^26,K.1^74,-1*K.1^50,K.1^10,K.1^2,-1*K.1^10,K.1^70,-1*K.1^74,-1*K.1^86,-1*K.1^22,K.1^62,K.1^14,-1*K.1^82,-1*K.1^2,-1*K.1^34,-1*K.1^37,-1*K.1^53,K.1,-1*K.1^5,-1*K.1^65,-1*K.1^61,K.1^89,-1*K.1^85,K.1^77,-1*K.1^43,K.1^95,-1*K.1^83,-1*K.1^71,K.1^7,-1*K.1^95,-1*K.1^55,K.1^29,-1*K.1^77,-1*K.1^67,K.1^71,K.1^13,-1*K.1^47,-1*K.1^23,-1*K.1^7,K.1^47,K.1^19,-1*K.1^19,K.1^31,-1*K.1,K.1^67,K.1^65,K.1^85,K.1^37,K.1^17,K.1^49,K.1^25,-1*K.1^59,-1*K.1^49,K.1^23,-1*K.1^11,K.1^73,K.1^5,-1*K.1^41,K.1^43,-1*K.1^35,-1*K.1^31,-1*K.1^91,K.1^91,-1*K.1^29,K.1^61,-1*K.1^89,K.1^83,K.1^59,K.1^79,K.1^41,K.1^11,-1*K.1^25,K.1^55,-1*K.1^17,-1*K.1^13,K.1^35,-1*K.1^73,-1*K.1^79,K.1^53,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^84,-1*K.1^12,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,K.1^12,K.1^84,K.1^88,-1*K.1^56,K.1^8,-1*K.1^40,-1*K.1^88,-1*K.1^8,K.1^40,K.1^56,-1*K.1^66,-1*K.1^30,K.1^90,-1*K.1^6,K.1^18,-1*K.1^78,-1*K.1^42,K.1^54,-1*K.1^54,K.1^42,-1*K.1^18,K.1^78,K.1^6,-1*K.1^90,K.1^30,K.1^66,-1*K.1^20,-1*K.1^68,K.1^44,K.1^28,-1*K.1^92,-1*K.1^44,K.1^20,-1*K.1^4,-1*K.1^52,K.1^68,K.1^52,-1*K.1^28,K.1^76,K.1^4,K.1^92,-1*K.1^76,-1*K.1^39,-1*K.1^15,-1*K.1^57,-1*K.1^75,K.1^93,K.1^57,K.1^15,K.1^75,-1*K.1^93,-1*K.1^69,K.1^69,K.1^87,-1*K.1^87,K.1^33,-1*K.1^51,-1*K.1^33,K.1^51,K.1^3,K.1^45,K.1^63,-1*K.1^81,K.1^9,K.1^39,K.1^21,K.1^27,-1*K.1^45,-1*K.1^3,-1*K.1^63,K.1^81,-1*K.1^21,-1*K.1^27,-1*K.1^9,-1*K.1^46,-1*K.1^14,-1*K.1^38,K.1^34,K.1^50,-1*K.1^10,K.1^58,K.1^2,K.1^82,K.1^26,-1*K.1^2,-1*K.1^58,-1*K.1^50,K.1^38,-1*K.1^62,-1*K.1^70,-1*K.1^74,K.1^70,-1*K.1^22,K.1^46,-1*K.1^86,-1*K.1^94,K.1^86,-1*K.1^26,K.1^22,K.1^10,K.1^74,-1*K.1^34,-1*K.1^82,K.1^14,K.1^94,K.1^62,K.1^59,K.1^43,-1*K.1^95,K.1^91,K.1^31,K.1^35,-1*K.1^7,K.1^11,-1*K.1^19,K.1^53,-1*K.1,K.1^13,K.1^25,-1*K.1^89,K.1,K.1^41,-1*K.1^67,K.1^19,K.1^29,-1*K.1^25,-1*K.1^83,K.1^49,K.1^73,K.1^89,-1*K.1^49,-1*K.1^77,K.1^77,-1*K.1^65,K.1^95,-1*K.1^29,-1*K.1^31,-1*K.1^11,-1*K.1^59,-1*K.1^79,-1*K.1^47,-1*K.1^71,K.1^37,K.1^47,-1*K.1^73,K.1^85,-1*K.1^23,-1*K.1^91,K.1^55,-1*K.1^53,K.1^61,K.1^65,K.1^5,-1*K.1^5,K.1^67,-1*K.1^35,K.1^7,-1*K.1^13,-1*K.1^37,-1*K.1^17,-1*K.1^55,-1*K.1^85,K.1^71,-1*K.1^41,K.1^79,K.1^83,-1*K.1^61,K.1^23,K.1^17,-1*K.1^43,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,-1*K.1^32,K.1^64,K.1^48,-1*K.1^48,-1*K.1^64,K.1^32,K.1^24,-1*K.1^72,K.1^72,-1*K.1^24,-1*K.1^80,K.1^16,-1*K.1^16,K.1^80,K.1^12,K.1^84,K.1^36,-1*K.1^60,-1*K.1^36,K.1^60,-1*K.1^84,-1*K.1^12,-1*K.1^8,K.1^40,-1*K.1^88,K.1^56,K.1^8,K.1^88,-1*K.1^56,-1*K.1^40,K.1^30,K.1^66,-1*K.1^6,K.1^90,-1*K.1^78,K.1^18,K.1^54,-1*K.1^42,K.1^42,-1*K.1^54,K.1^78,-1*K.1^18,-1*K.1^90,K.1^6,-1*K.1^66,-1*K.1^30,K.1^76,K.1^28,-1*K.1^52,-1*K.1^68,K.1^4,K.1^52,-1*K.1^76,K.1^92,K.1^44,-1*K.1^28,-1*K.1^44,K.1^68,-1*K.1^20,-1*K.1^92,-1*K.1^4,K.1^20,-1*K.1^57,-1*K.1^81,-1*K.1^39,-1*K.1^21,K.1^3,K.1^39,K.1^81,K.1^21,-1*K.1^3,-1*K.1^27,K.1^27,K.1^9,-1*K.1^9,K.1^63,-1*K.1^45,-1*K.1^63,K.1^45,K.1^93,K.1^51,K.1^33,-1*K.1^15,K.1^87,K.1^57,K.1^75,K.1^69,-1*K.1^51,-1*K.1^93,-1*K.1^33,K.1^15,-1*K.1^75,-1*K.1^69,-1*K.1^87,K.1^50,K.1^82,K.1^58,-1*K.1^62,-1*K.1^46,K.1^86,-1*K.1^38,-1*K.1^94,-1*K.1^14,-1*K.1^70,K.1^94,K.1^38,K.1^46,-1*K.1^58,K.1^34,K.1^26,K.1^22,-1*K.1^26,K.1^74,-1*K.1^50,K.1^10,K.1^2,-1*K.1^10,K.1^70,-1*K.1^74,-1*K.1^86,-1*K.1^22,K.1^62,K.1^14,-1*K.1^82,-1*K.1^2,-1*K.1^34,K.1^37,K.1^53,-1*K.1,K.1^5,K.1^65,K.1^61,-1*K.1^89,K.1^85,-1*K.1^77,K.1^43,-1*K.1^95,K.1^83,K.1^71,-1*K.1^7,K.1^95,K.1^55,-1*K.1^29,K.1^77,K.1^67,-1*K.1^71,-1*K.1^13,K.1^47,K.1^23,K.1^7,-1*K.1^47,-1*K.1^19,K.1^19,-1*K.1^31,K.1,-1*K.1^67,-1*K.1^65,-1*K.1^85,-1*K.1^37,-1*K.1^17,-1*K.1^49,-1*K.1^25,K.1^59,K.1^49,-1*K.1^23,K.1^11,-1*K.1^73,-1*K.1^5,K.1^41,-1*K.1^43,K.1^35,K.1^31,K.1^91,-1*K.1^91,K.1^29,-1*K.1^61,K.1^89,-1*K.1^83,-1*K.1^59,-1*K.1^79,-1*K.1^41,-1*K.1^11,K.1^25,-1*K.1^55,K.1^17,K.1^13,-1*K.1^35,K.1^73,K.1^79,-1*K.1^53,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(192: Sparse := true); S := [ K |1,-1,K.1^64,-1*K.1^32,-1*K.1^48,K.1^48,K.1^32,-1*K.1^64,-1*K.1^72,K.1^24,-1*K.1^24,K.1^72,K.1^16,-1*K.1^80,K.1^80,-1*K.1^16,-1*K.1^84,-1*K.1^12,-1*K.1^60,K.1^36,K.1^60,-1*K.1^36,K.1^12,K.1^84,K.1^88,-1*K.1^56,K.1^8,-1*K.1^40,-1*K.1^88,-1*K.1^8,K.1^40,K.1^56,-1*K.1^66,-1*K.1^30,K.1^90,-1*K.1^6,K.1^18,-1*K.1^78,-1*K.1^42,K.1^54,-1*K.1^54,K.1^42,-1*K.1^18,K.1^78,K.1^6,-1*K.1^90,K.1^30,K.1^66,-1*K.1^20,-1*K.1^68,K.1^44,K.1^28,-1*K.1^92,-1*K.1^44,K.1^20,-1*K.1^4,-1*K.1^52,K.1^68,K.1^52,-1*K.1^28,K.1^76,K.1^4,K.1^92,-1*K.1^76,K.1^39,K.1^15,K.1^57,K.1^75,-1*K.1^93,-1*K.1^57,-1*K.1^15,-1*K.1^75,K.1^93,K.1^69,-1*K.1^69,-1*K.1^87,K.1^87,-1*K.1^33,K.1^51,K.1^33,-1*K.1^51,-1*K.1^3,-1*K.1^45,-1*K.1^63,K.1^81,-1*K.1^9,-1*K.1^39,-1*K.1^21,-1*K.1^27,K.1^45,K.1^3,K.1^63,-1*K.1^81,K.1^21,K.1^27,K.1^9,-1*K.1^46,-1*K.1^14,-1*K.1^38,K.1^34,K.1^50,-1*K.1^10,K.1^58,K.1^2,K.1^82,K.1^26,-1*K.1^2,-1*K.1^58,-1*K.1^50,K.1^38,-1*K.1^62,-1*K.1^70,-1*K.1^74,K.1^70,-1*K.1^22,K.1^46,-1*K.1^86,-1*K.1^94,K.1^86,-1*K.1^26,K.1^22,K.1^10,K.1^74,-1*K.1^34,-1*K.1^82,K.1^14,K.1^94,K.1^62,-1*K.1^59,-1*K.1^43,K.1^95,-1*K.1^91,-1*K.1^31,-1*K.1^35,K.1^7,-1*K.1^11,K.1^19,-1*K.1^53,K.1,-1*K.1^13,-1*K.1^25,K.1^89,-1*K.1,-1*K.1^41,K.1^67,-1*K.1^19,-1*K.1^29,K.1^25,K.1^83,-1*K.1^49,-1*K.1^73,-1*K.1^89,K.1^49,K.1^77,-1*K.1^77,K.1^65,-1*K.1^95,K.1^29,K.1^31,K.1^11,K.1^59,K.1^79,K.1^47,K.1^71,-1*K.1^37,-1*K.1^47,K.1^73,-1*K.1^85,K.1^23,K.1^91,-1*K.1^55,K.1^53,-1*K.1^61,-1*K.1^65,-1*K.1^5,K.1^5,-1*K.1^67,K.1^35,-1*K.1^7,K.1^13,K.1^37,K.1^17,K.1^55,K.1^85,-1*K.1^71,K.1^41,-1*K.1^79,-1*K.1^83,K.1^61,-1*K.1^23,-1*K.1^17,K.1^43,1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[192, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_37056_a:= KnownIrreducibles(CR);