Properties

Label 640.21479.32.g1
Order $ 2^{2} \cdot 5 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 29 & 0 \\ 20 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{10}.C_2^5$
Order: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Outer Automorphisms: $C_2^5:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times D_5).C_2^6.C_2^2.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(49152\)\(\medspace = 2^{14} \cdot 3 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$D_{10}.C_2^5$
Minimal over-subgroups:$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times F_5$
Maximal under-subgroups:$C_{10}$$D_5$$D_5$$C_2^2$

Other information

Number of subgroups in this autjugacy class$14$
Number of conjugacy classes in this autjugacy class$14$
Möbius function$0$
Projective image$D_{10}.C_2^4$