Subgroup ($H$) information
| Description: | $C_2\times D_{10}$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
29 & 0 \\
20 & 9
\end{array}\right), \left(\begin{array}{rr}
1 & 32 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 20 \\
0 & 1
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_{10}.C_2^5$ |
| Order: | \(640\)\(\medspace = 2^{7} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Outer Automorphisms: | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2^5\times D_5).C_2^6.C_2^2.\PSL(2,7)$ |
| $\operatorname{Aut}(H)$ | $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(49152\)\(\medspace = 2^{14} \cdot 3 \) |
| $W$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $7$ |
| Number of conjugacy classes in this autjugacy class | $7$ |
| Möbius function | $64$ |
| Projective image | $C_2^3\times F_5$ |