Properties

Label 640.21479.8.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 29 & 0 \\ 0 & 29 \end{array}\right), \left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 29 & 30 \\ 20 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{10}.C_2^5$
Order: \(640\)\(\medspace = 2^{7} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times D_5).C_2^6.C_2^2.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2^2\wr C_2\times F_5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\operatorname{res}(S)$$D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3072\)\(\medspace = 2^{10} \cdot 3 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$D_{10}.C_2^5$
Minimal over-subgroups:$D_{10}.D_4$$C_{20}:C_2^3$
Maximal under-subgroups:$C_2\times D_{10}$$C_2\times C_{20}$$C_{10}:C_4$$C_4\times D_5$$C_4\times D_5$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$28$
Number of conjugacy classes in this autjugacy class$28$
Möbius function$-8$
Projective image$C_2^3\times F_5$