Properties

Label 60.5.10.a1.a1
Order $ 2 \cdot 3 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,2)(4,5), (3,5,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Ambient group ($G$) information

Description: $A_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 10T7.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3$
Normal closure:$A_5$
Core:$C_1$
Minimal over-subgroups:$A_5$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this conjugacy class$10$
Möbius function$-1$
Projective image$A_5$