Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $A_{5}$ | |
| CHM label : | $A_{5}(10)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9)(3,4)(5,10)(6,7), (1,3,5,7,9)(2,4,6,8,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
5T4, 6T12, 12T33, 15T5, 20T15, 30T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1 $ | $20$ | $3$ | $( 2, 4, 5)( 3, 6, 9)( 7, 8,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $15$ | $2$ | $( 2, 7)( 4,10)( 5, 8)( 6, 9)$ |
| $ 5, 5 $ | $12$ | $5$ | $( 1, 2, 3, 6, 8)( 4, 9, 7, 5,10)$ |
| $ 5, 5 $ | $12$ | $5$ | $( 1, 2, 9, 6, 7)( 3, 8, 4,10, 5)$ |
Group invariants
| Order: | $60=2^{2} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [60, 5] |
| Character table: |
2 2 . 2 . .
3 1 1 . . .
5 1 . . 1 1
1a 3a 2a 5a 5b
2P 1a 3a 1a 5b 5a
3P 1a 1a 2a 5b 5a
5P 1a 3a 2a 1a 1a
X.1 1 1 1 1 1
X.2 3 . -1 A *A
X.3 3 . -1 *A A
X.4 4 1 . -1 -1
X.5 5 -1 1 . .
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|