Properties

Label 60.5.1.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: $1$
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,4), (1,5,3)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), the socle, a direct factor, nonabelian, a Hall subgroup, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Ambient group ($G$) information

Description: $A_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$A_5$
Complements:$C_1$
Maximal under-subgroups:$A_4$$D_5$$S_3$

Other information

Möbius function$1$
Projective image$A_5$