Properties

Label 592896.a.1536.b1
Order $ 2 \cdot 193 $
Index $ 2^{9} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{193}$
Order: \(386\)\(\medspace = 2 \cdot 193 \)
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(386\)\(\medspace = 2 \cdot 193 \)
Generators: $a^{96}b^{3080}, b^{16}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{16}\times F_{193}$
Order: \(592896\)\(\medspace = 2^{10} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_8\times C_{192}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Automorphism Group: $C_2.C_4^3.C_2^6.C_2$
Outer Automorphisms: $C_2.C_4^3.C_2^6.C_2$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1544}.C_{96}.C_2.C_2^4$
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$C_{16}\times F_{193}$
Minimal over-subgroups:$C_{193}:C_6$$D_{386}$$C_{193}:C_4$
Maximal under-subgroups:$C_{193}$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{16}\times F_{193}$