Properties

Label 592896.a
Order \( 2^{10} \cdot 3 \cdot 193 \)
Exponent \( 2^{6} \cdot 3 \cdot 193 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{10} \cdot 3 \)
$\card{Z(G)}$ \( 2^{4} \)
$\card{\Aut(G)}$ \( 2^{13} \cdot 3 \cdot 193 \)
$\card{\mathrm{Out}(G)}$ \( 2^{7} \)
Perm deg. not computed
Trans deg. $3088$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath (using Gap)

Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, -2, -2, -2, -2, -2, -2, -3, -2, -2, -2, -2, -193, 24, 61, 98, 135, 172, 209, 48384007, 11953171, 10768927, 4573483, 3484855, 507523, 309103, 283, 44831240, 26894612, 8221856, 2286188, 3838808, 1141844, 695384, 320, 28477449, 24192021, 483873, 5080365, 4083897, 313989, 433521, 357, 62650378, 14091286, 1064482, 1393966, 4093114, 690694, 953650, 394, 51314699, 30744599, 2322467, 3041327, 3594299, 1506887, 746579]); a,b := Explode([G.1, G.8]); AssignNames(~G, ["a", "a2", "a4", "a8", "a16", "a32", "a64", "b", "b2", "b4", "b8", "b16"]);
 
Copy content gap:G := PcGroupCode(4162594550001367714640934999932307334598872412175220890355033970779545280117234321648197157906143584463383148720132441652348930174997139909521698149653135872296543714912057474232085563441356811729953197289368821079565440525911098950609617512493514682848238719022801596862367777849915266591462229593997443263,592896); a := G.1; b := G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4162594550001367714640934999932307334598872412175220890355033970779545280117234321648197157906143584463383148720132441652348930174997139909521698149653135872296543714912057474232085563441356811729953197289368821079565440525911098950609617512493514682848238719022801596862367777849915266591462229593997443263,592896)'); a = G.1; b = G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4162594550001367714640934999932307334598872412175220890355033970779545280117234321648197157906143584463383148720132441652348930174997139909521698149653135872296543714912057474232085563441356811729953197289368821079565440525911098950609617512493514682848238719022801596862367777849915266591462229593997443263,592896)'); a = G.1; b = G.8;
 

Group information

Description:$C_{16}\times F_{193}$
Order: \(592896\)\(\medspace = 2^{10} \cdot 3 \cdot 193 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage:G.Order()
 
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage:G.Exponent()
 
Automorphism group:$C_{1544}.C_{96}.C_2.C_2^4$, of order \(4743168\)\(\medspace = 2^{13} \cdot 3 \cdot 193 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$, $C_{193}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage:G.DerivedLength()
 

This group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24 32 48 64 96 192 193 386 772 1544 3088
Elements 1 387 386 1932 1158 8496 4632 35520 18528 49408 74112 98816 98816 197632 192 192 384 768 1536 592896
Conjugacy classes   1 3 2 12 6 48 24 192 96 256 384 512 512 1024 1 1 2 4 8 3088
Divisions 1 3 1 6 3 12 6 24 12 16 24 16 16 16 1 1 1 1 1 161
Autjugacy classes 1 3 2 8 6 16 16 32 32 32 64 32 64 64 1 1 1 1 1 377

Minimal presentations

Permutation degree:not computed
Transitive degree:$3088$
Rank: $2$
Inequivalent generating pairs: $24576$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 192 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath (using Gap)


Presentation: $\langle a, b \mid a^{192}=b^{3088}=1, b^{a}=b^{2625} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, -2, -2, -2, -2, -2, -2, -3, -2, -2, -2, -2, -193, 24, 61, 98, 135, 172, 209, 48384007, 11953171, 10768927, 4573483, 3484855, 507523, 309103, 283, 44831240, 26894612, 8221856, 2286188, 3838808, 1141844, 695384, 320, 28477449, 24192021, 483873, 5080365, 4083897, 313989, 433521, 357, 62650378, 14091286, 1064482, 1393966, 4093114, 690694, 953650, 394, 51314699, 30744599, 2322467, 3041327, 3594299, 1506887, 746579]); a,b := Explode([G.1, G.8]); AssignNames(~G, ["a", "a2", "a4", "a8", "a16", "a32", "a64", "b", "b2", "b4", "b8", "b16"]);
 
Copy content gap:G := PcGroupCode(4162594550001367714640934999932307334598872412175220890355033970779545280117234321648197157906143584463383148720132441652348930174997139909521698149653135872296543714912057474232085563441356811729953197289368821079565440525911098950609617512493514682848238719022801596862367777849915266591462229593997443263,592896); a := G.1; b := G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4162594550001367714640934999932307334598872412175220890355033970779545280117234321648197157906143584463383148720132441652348930174997139909521698149653135872296543714912057474232085563441356811729953197289368821079565440525911098950609617512493514682848238719022801596862367777849915266591462229593997443263,592896)'); a = G.1; b = G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4162594550001367714640934999932307334598872412175220890355033970779545280117234321648197157906143584463383148720132441652348930174997139909521698149653135872296543714912057474232085563441356811729953197289368821079565440525911098950609617512493514682848238719022801596862367777849915266591462229593997443263,592896)'); a = G.1; b = G.8;
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 64 & 0 \\ 0 & 190 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{193})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(193) | [[1, 1, 0, 1], [64, 0, 0, 190], [5, 0, 0, 1]] >;
 
Copy content gap:G := Group([[[ Z(193)^0, Z(193)^0 ], [ 0*Z(193), Z(193)^0 ]], [[ Z(193)^12, 0*Z(193) ], [ 0*Z(193), Z(193)^180 ]], [[ Z(193), 0*Z(193) ], [ 0*Z(193), Z(193)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(193), 2, 2) G = MatrixGroup([MS([[1, 1], [0, 1]]), MS([[64, 0], [0, 190]]), MS([[5, 0], [0, 1]])])
 
Direct product: $C_{16}$ $\, \times\, $ $F_{193}$
Semidirect product: $C_{3088}$ $\,\rtimes\,$ $C_{192}$ $(C_{3088}:C_{64})$ $\,\rtimes\,$ $C_3$ $(C_{193}:C_{64})$ $\,\rtimes\,$ $C_{48}$ $(C_{193}:C_{48})$ $\,\rtimes\,$ $C_{64}$ all 14
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_8\times F_{193})$ . $C_2$ $(C_4\times F_{193})$ . $C_4$ $(C_2\times F_{193})$ . $C_8$ $C_8$ . $(C_2\times F_{193})$ all 117
Aut. group: $\Aut(C_{193}:C_{64})$ $\Aut(C_{193}:C_{192})$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{16} \times C_{192} \simeq C_{16} \times C_{64} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{16}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage:G.AllSubgroups()
 

There are 55300 subgroups in 580 conjugacy classes, 295 normal (83 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{16}$ $G/Z \simeq$ $F_{193}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage:G.Center()
 
Commutator: $G' \simeq$ $C_{193}$ $G/G' \simeq$ $C_{16}\times C_{192}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_8$ $G/\Phi \simeq$ $C_2\times F_{193}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{3088}$ $G/\operatorname{Fit} \simeq$ $C_{192}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{16}\times F_{193}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{386}$ $G/\operatorname{soc} \simeq$ $C_8\times C_{192}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_{16}\times C_{64}$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
193-Sylow subgroup: $P_{ 193 } \simeq$ $C_{193}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_{16}\times F_{193}$ $\rhd$ $C_{16}\times F_{193}$ $\rhd$ $C_{193}$ $\rhd$ $C_{193}$ $\rhd$ $C_1$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage:G.DerivedSeriesOfGroup()
 
Chief series $C_{16}\times F_{193}$ $\rhd$ $C_{16}\times F_{193}$ $\rhd$ $C_{3088}:C_{96}$ $\rhd$ $C_{3088}:C_{96}$ $\rhd$ $C_{3088}:C_{48}$ $\rhd$ $C_{3088}:C_{48}$ $\rhd$ $C_{3088}:C_{24}$ $\rhd$ $C_{3088}:C_{24}$ $\rhd$ $C_{3088}:C_{12}$ $\rhd$ $C_{3088}:C_{12}$ $\rhd$ $C_{3088}:C_6$ $\rhd$ $C_{3088}:C_6$ $\rhd$ $C_{193}:C_{48}$ $\rhd$ $C_{193}:C_{48}$ $\rhd$ $C_{3088}$ $\rhd$ $C_{3088}$ $\rhd$ $C_{1544}$ $\rhd$ $C_{1544}$ $\rhd$ $C_{772}$ $\rhd$ $C_{772}$ $\rhd$ $C_{386}$ $\rhd$ $C_{386}$ $\rhd$ $C_{193}$ $\rhd$ $C_{193}$ $\rhd$ $C_1$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage:G.ChiefSeries()
 
Lower central series $C_{16}\times F_{193}$ $\rhd$ $C_{16}\times F_{193}$ $\rhd$ $C_{193}$ $\rhd$ $C_{193}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_1$ $\lhd$ $C_{16}$ $\lhd$ $C_{16}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3088 \times 3088$ character table is not available for this group.

Rational character table

The $161 \times 161$ rational character table is not available for this group.