Subgroup ($H$) information
Description: | $\OD_{32}:C_2$ |
Order: | \(64\)\(\medspace = 2^{6} \) |
Index: | \(9\)\(\medspace = 3^{2} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$a, b^{3}$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $D_4.F_9$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^2\times F_9).C_2^3$ |
$\operatorname{Aut}(H)$ | $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
$\operatorname{res}(S)$ | $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_8$ | ||
Normalizer: | $\OD_{32}:C_2$ | ||
Normal closure: | $D_4.F_9$ | ||
Core: | $D_4$ | ||
Minimal over-subgroups: | $D_4.F_9$ | ||
Maximal under-subgroups: | $\OD_{16}:C_2$ | $C_2\times C_{16}$ | $\OD_{32}$ |
Other information
Number of subgroups in this conjugacy class | $9$ |
Möbius function | $-1$ |
Projective image | $C_6^2:C_8$ |