Subgroup ($H$) information
Description: | $D_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$b^{3}, c^{9}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Ambient group ($G$) information
Description: | $D_4.F_9$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
Description: | $F_9$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^2\times F_9).C_2^3$ |
$\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_3^2:C_8$ | |
Normalizer: | $D_4.F_9$ | |
Minimal over-subgroups: | $C_3\times D_4$ | $D_4:C_2$ |
Maximal under-subgroups: | $C_4$ | $C_2^2$ |
Other information
Möbius function | $0$ |
Projective image | $C_6^2:C_8$ |