Properties

Label 576.5151.18.c1.a1
Order $ 2^{5} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, c^{9}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_4.F_9$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times F_9).C_2^3$
$\operatorname{Aut}(H)$ $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$D_4:C_2$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_8$
Normalizer:$\OD_{32}:C_2$
Normal closure:$C_3^2:\OD_{32}$
Core:$C_4$
Minimal over-subgroups:$C_3^2:\OD_{32}$$\OD_{32}:C_2$
Maximal under-subgroups:$C_2\times C_8$$C_{16}$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$1$
Projective image$C_6^2:C_8$