Properties

Label 5400.q.540.c1.b1
Order $ 2 \cdot 5 $
Index $ 2^{2} \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $ac^{3}e^{10}, d^{3}e^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}^2:(C_2\times D_6)$
Order: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^2.\He_3.C_4.C_2^3$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$S_3\times C_{10}$
Normalizer:$S_3\times D_{10}$
Normal closure:$(C_5\times C_{15}):S_3$
Core:$C_1$
Minimal over-subgroups:$C_5\times D_5$$C_{30}$$C_5\times S_3$$C_2\times C_{10}$$D_{10}$$D_{10}$
Maximal under-subgroups:$C_5$$C_2$
Autjugate subgroups:5400.q.540.c1.a1

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$0$
Projective image$C_{15}^2:(C_2\times D_6)$