Subgroup ($H$) information
Description: | $C_2\times C_{10}$ |
Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Index: | \(270\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Generators: |
$ae^{5}, d^{3}e^{6}, c^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{15}^2:(C_2\times D_6)$ |
Order: | \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^2.\He_3.C_4.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $135$ |
Möbius function | $0$ |
Projective image | $C_{15}^2:(C_2\times D_6)$ |