Properties

Label 5400.q.45.a1.b1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_{10}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ac^{4}d^{5}, c^{3}, d^{10}e^{10}, bd^{12}, d^{3}e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:(C_2\times D_6)$
Order: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 45T383.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^2.\He_3.C_4.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$S_3\times D_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$S_3\times D_{10}$
Normal closure:$C_{15}^2:(C_2\times D_6)$
Core:$C_1$
Minimal over-subgroups:$S_3\times D_5^2$$D_5\times S_3^2$
Maximal under-subgroups:$S_3\times D_5$$S_3\times C_{10}$$S_3\times D_5$$C_3\times D_{10}$$S_3\times D_5$$D_{30}$$S_3\times D_5$$C_2\times D_{10}$$C_2\times D_6$
Autjugate subgroups:5400.q.45.a1.a1

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$0$
Projective image$C_{15}^2:(C_2\times D_6)$